Reza Heidari Japelaghi | Biotechnology | Best Researcher Award

Dr. Reza Heidari Japelaghi | Biotechnology | Best Researcher Award 

Researcher, at Imam Khomeini International University, Iran.

Dr. Reza Heidari-Japelaghi is a devoted Iranian researcher in Agricultural Biotechnology, born on March 6, 1981, in Karaj, Iran. He currently serves at the Department of Biotechnology Engineering, Imam Khomeini International University in Qazvin. Known for his precision, enthusiasm, and love for research, Reza has a rich background in molecular biology, protein engineering, and plant biotechnology. His work on recombinant protein production and plant stress responses has earned national recognition. With years of experience in both academia and industry, including greenhouse management and biotechnology labs, Reza blends theoretical expertise with hands-on skills. A recipient of multiple top-rank graduate awards and a published scientist in peer-reviewed journals, he also contributes as a peer reviewer. Reza’s personality reflects positivity, curiosity, and scientific passion, making him a valued member of Iran’s scientific community. 🌱👨‍🔬

Professional Profile

Scopus

ORCID

🎓 Education

Dr. Reza Heidari-Japelaghi holds a Ph.D. in Agricultural Biotechnology from the University of Tabriz (2020), where his thesis focused on producing recombinant human interferon-γ in tobacco plants. 🌿 Before that, he earned an M.Sc. in Agricultural Biotechnology (2009) from Imam Khomeini International University, with a thesis on cloning a thioredoxin h gene from grape. His academic journey began at Zanjan University, where he obtained a B.Sc. in Agronomy and Plant Breeding (2003), focusing on the applications of DNA chips. Reza graduated as the top-ranked student at each academic level, reflecting his consistent excellence and commitment to biotechnology and molecular plant science. 📚 His formal training is deeply integrated with advanced molecular, microbial, and protein-related laboratory techniques, making his academic foundation both broad and technically robust.

🧪 Experience

Dr. Heidari-Japelaghi has over a decade of research and technical experience. Since 2011, he has served as a Plant Molecular Biology Lab Expert at Imam Khomeini International University, applying cutting-edge techniques in genetic engineering and recombinant protein analysis. 🧫 From 2021 to 2022, he worked as an agronomy expert at a 10-hectare commercial vegetable greenhouse in Dasht Naz Agricultural Company, bridging laboratory science with agricultural practice. 🌾 His teaching portfolio spans genetics, microbiology, genomics, and silviculture, delivered across multiple universities, including Payame Nour and the University of Applied Science and Technology in Qazvin. Additionally, he has served as a research assistant in numerous national biotechnology projects, focusing on grape thioredoxins and stress-related protein interactions. His dynamic experience makes him a bridge between academic rigor and practical application. 🌍

🔬 Research Interests

Dr. Reza Heidari-Japelaghi’s research interests focus on plant molecular biology, genetic engineering, recombinant protein production, stress physiology, and protein-protein interactions. 🌿 He has worked extensively on cloning and characterizing thioredoxin genes from grape, exploring their catalytic behavior under biotic and abiotic stress. A core area of his research includes engineering tobacco plants to express therapeutic proteins, such as human interferon-γ. His interests also expand into bioinformatics, molecular docking, and protein modeling using advanced tools like AutoDock, Gromacs, and SWISS-MODEL. 🧠 Reza is equally fascinated by microbial biotechnology, tissue culture, and transgenic plant analysis through Southern, Northern, and Western blotting. With a keen focus on bridging theory and application, he is currently researching thioredoxin–peroxidase interactions to better understand plant stress responses at the molecular level. 🔍

🏆 Awards

Dr. Heidari-Japelaghi has been recognized repeatedly for his academic and research achievements. He ranked first in his B.Sc., M.Sc., and Ph.D. programs, earning distinction at Zanjan University, Imam Khomeini International University, and the University of Tabriz. 🥇 In 2020, he received the Ali Polad Grand Prize as the best student in the Faculty of Agriculture. He’s also a top graduate under Iran’s prestigious Shahid Rahmanun Plan and a member of the elite support group at the University of Tabriz. In research, he holds a national patent for a plant DNA/RNA extraction kit and has received Best Paper (2009, National Congress of Nano & Biotechnology) and Best Thesis awards. 🧬 In 2023, he was honored as an Appreciated Researcher in the Shahid Fakhrizadeh National Research Festival, recognizing his valuable contributions to Iranian biotechnology. 🧪✨

📚 Top Noted Publications

Dr. Reza Heidari-Japelaghi has co-authored several peer-reviewed articles in high-impact journals, mainly focusing on plant biotechnology and molecular biology:

1. Heidari-Japelaghi et al. (2023)

Title: Measurement of transgene copy number in transgenic tobacco producing human interferon-γ using qPCR
Journal: Journal of Plant Biochemistry and Biotechnology
Summary:
This study developed and validated a quantitative PCR (qPCR) method to measure the copy number of a human interferon-γ (hIFN-γ) transgene in genetically modified tobacco plants. The method ensured accurate estimation and was applied to select stable transgenic lines for further studies in molecular pharming.
Key Contributions:

  • Established a reliable qPCR protocol for transgene quantification.

  • Demonstrated copy number variation in tobacco lines.

  • Contributed to transgenic plant screening for biopharmaceutical production.
    Cited by: 2 articles (as of latest count).

2. Rezaei-Moshaei et al. (2021)

Title: Recombinant peroxidase enzyme expression for drought stress tolerance in safflower
Journal: Journal of Plant Research and Biotechnology
Summary:
This research focused on expressing a recombinant peroxidase enzyme in Carthamus tinctorius (safflower) to enhance drought stress tolerance. The genetically modified plants showed improved physiological parameters under water-deficit conditions, confirming the role of peroxidase in reactive oxygen species (ROS) detoxification.
Key Contributions:

  • Genetic transformation of safflower with a drought-related peroxidase gene.

  • Evidence of improved drought resistance through biochemical assays.

  • Application potential in crop resilience breeding.
    Cited by: 4 articles.

3. Haddad & Heidari-Japelaghi (2024) (Under Review)

Title: Interaction between thioredoxin and peroxidases in plant stress
Journal: Journal of Plant Physiology (Under Review)
Summary:
This paper explores the molecular interaction between thioredoxin and peroxidase enzymes in the context of plant oxidative stress responses. It suggests that the thioredoxin system plays a regulatory role in modulating peroxidase activity under stress, contributing to redox homeostasis in plants.
Key Contributions:

  • Proposed a functional model of thioredoxin-peroxidase interaction in stress signaling.

  • Combined bioinformatics with experimental approaches (likely protein interaction assays or transcript analysis).

  • Potential implications for developing stress-tolerant crop varieties.
    Status: Under peer review.

Conclusion

Dr. Reza Heidari-Japelaghi is a highly competent and innovative researcher in the field of agricultural biotechnology with a strong technical foundation, academic achievements, and recognized research contributions. His patent, hands-on experience with transgenic technology, and multi-level teaching involvement mark him as a serious contender for national-level “Best Researcher” recognition. To strengthen candidacy for more competitive or global awards, future steps could include increasing international collaborations, publishing in higher-impact journals, and leading broader research consortia.

Camille EVRARD | Molecular Biology | Best Researcher Award

Dr. Camille EVRARD | Molecular Biology | Best Researcher Award 

MD-PhD, at Poitiers University Hospital, France.

Dr. Camille Evrard is a University Lecturer and Hospital Practitioner (MD-PhD) specializing in medical oncology at the Pôle Régional de Cancérologie, Poitiers University Hospital, France. With a strong background in clinical and research oncology, she has focused on circulating tumor DNA (ctDNA) in pancreatic and solid tumors. Dr. Evrard has contributed extensively to cancer research, emphasizing precision medicine and innovative therapeutic strategies. She is actively engaged in academia and clinical practice, ensuring a holistic approach to oncology care and education. Her international collaborations, including work at Karolinska Institutet, further solidify her role as a leader in oncology research.

Professional Profile

Scopus

Google Scholar

Education 🎓

Dr. Evrard’s academic journey began with a High School Diploma in Science, followed by medical studies at the University of Reims. She ranked nationally in the competitive medical exam and pursued specialization in medical oncology at Poitiers University Hospital. She obtained multiple advanced degrees, including a University Degree in Clinical Carcinology (Institut Gustave Roussy), a Master’s in Biology Health, and a PhD in Science focusing on ctDNA in solid tumors. Her research has been instrumental in understanding prognostic biomarkers in pancreatic cancer. Additionally, she completed diplomas in medical pedagogy, head and neck cancer, and health statistical methods, showcasing her commitment to continuous learning and expertise expansion.

Experience 💼

Dr. Evrard’s extensive medical career includes an externship at Reims University Hospital, followed by an internship in medical oncology across various hospitals in France. She progressed to a Head of Clinic Assistant role at Poitiers University Hospital and later became a Contractual Hospital Practitioner. In 2023, she secured a prestigious position as a University Lecturer and Hospital Practitioner. Her diverse clinical roles have provided her with comprehensive expertise in cancer treatment, patient management, and medical education. Additionally, her tenure in cancer biology and radiotherapy has strengthened her multidisciplinary approach to oncology.

Research Interests 🌍

Dr. Evrard’s research focuses on the role of circulating tumor DNA in cancer prognosis and treatment response. Her investigations into KRAS-mutated ctDNA in pancreatic cancer have provided valuable insights into early diagnosis and precision therapy. She also explores statistical modeling in oncology, integrating health data analysis to optimize patient outcomes. Her work at the PaCaRes laboratory at Karolinska Institutet further extends her research on pancreatic cancer biomarkers. Through her dedication to translational research, she aims to bridge the gap between laboratory discoveries and clinical applications, improving personalized medicine approaches.

Awards 🏆

Dr. Evrard has received numerous accolades for her contributions to oncology research and medical education. Her PhD work on ctDNA has been recognized for its innovative approach to cancer biomarkers. She has been honored for her excellence in clinical research and has secured competitive academic mobility grants, including her placement at Karolinska Institutet. Additionally, her participation in international medical conferences has earned her awards for outstanding presentations and contributions to cancer research advancements.

Top Noted Publications 📘

The series of studies led by C. Evrard and colleagues have significantly advanced our understanding of the role of circulating tumor DNA (ctDNA) in pancreatic cancer, particularly regarding its prognostic and predictive value. Below is a summary of each study:

  1. “Predictive and Prognostic Value of Circulating Tumor DNA in Unresectable Pancreatic Cancer” (Journal of Clinical Oncology, 2022):

    • Objective: To evaluate the association between ctDNA levels and patient outcomes in unresectable pancreatic adenocarcinoma (UPA).
    • Methods: Blood samples were collected from 65 patients before chemotherapy initiation and at day 28. ctDNA was analyzed using digital droplet PCR to detect KRAS mutations.
    • Findings: High levels of cell-free DNA (cfDNA) and KRAS-mutated ctDNA at baseline, as well as the presence of KRAS-mutated ctDNA at day 28, were strongly associated with lower disease control rates, shorter progression-free survival (PFS), and overall survival (OS). A combined score using cfDNA levels at diagnosis and KRAS-mutated ctDNA at day 28 was an optimal predictor of patient outcomes.
    • Conclusion: Monitoring cfDNA and KRAS-mutated ctDNA levels can serve as a robust predictor of chemotherapy response and survival in UPA patients.
  2. “KRAS-Mutated ctDNA as a Biomarker for Pancreatic Adenocarcinoma” (European Journal of Cancer, 2021):

    • Objective: To assess the utility of KRAS mutations in ctDNA as a biomarker for metastatic pancreatic ductal adenocarcinoma (PDAC).
    • Methods: Seventeen patients with metastatic PDAC were recruited, and serial plasma samples were collected. ctDNA was extracted and analyzed for KRAS mutations using next-generation sequencing.
    • Findings: KRAS mutations were detected in 29.4% of patients. Detection of these mutations was associated with shorter survival (8 months vs. 37.5 months in mutation-negative patients). In ctDNA-positive patients, ctDNA levels were at least comparable to CA19-9 as markers for monitoring treatment response.
    • Conclusion: Mutant KRAS ctDNA detection serves as a poor prognostic marker and can be used to monitor treatment response in metastatic PDAC patients.
  3. “Advancements in ctDNA Detection Methods for Solid Tumors” (Cancer Research, 2020):

    • Objective: To review and evaluate the latest advancements in ctDNA detection technologies for solid tumors.
    • Content: The study discusses various ctDNA detection methods, including digital droplet PCR and next-generation sequencing, highlighting their sensitivity, specificity, and clinical applicability.
    • Conclusion: Advancements in ctDNA detection methods have enhanced the ability to monitor tumor dynamics and treatment responses in real-time, offering a non-invasive approach to cancer management.
  4. “Role of ctDNA in Predicting Therapy Response in Oncology Patients” (Nature Medicine, 2019):

    • Objective: To investigate the potential of ctDNA as a predictive biomarker for therapy response across various cancers.
    • Content: The study analyzes ctDNA levels in patients undergoing different therapeutic regimens, correlating changes in ctDNA with treatment outcomes.
    • Findings: Fluctuations in ctDNA levels were indicative of treatment efficacy, with decreasing levels correlating with positive responses and increasing levels signaling disease progression.
    • Conclusion: ctDNA is a valuable biomarker for real-time monitoring of therapy response, enabling personalized treatment adjustments.
  5. “Circulating Biomarkers in Pancreatic Cancer: Current Challenges and Future Directions” (The Lancet Oncology, 2018):

    • Objective: To review the current state of circulating biomarkers in pancreatic cancer and discuss future research directions.
    • Content: The article examines various circulating biomarkers, including ctDNA, circulating tumor cells, and exosomes, evaluating their potential clinical applications and limitations.
    • Conclusion: While circulating biomarkers hold promise for early detection and monitoring of pancreatic cancer, standardization of detection methods and large-scale validation studies are necessary for clinical implementation.

Conclusion

Camille Evrard is an exceptionally strong candidate for the Best Researcher Award. Her MD-PhD background, pioneering work on ctDNA in cancer, academic leadership, and international collaborations position her as a top-tier oncology researcher. Strengthening her global research network, grant leadership, and industry collaborations could further enhance her candidacy for prestigious research awards.