Heng Zhang | Molecular Biology | Best Researcher Award

Dr. Heng Zhang | Molecular Biology | Best Researcher Award 

Lecturer | Nankai University | China

Dr. Zhang Heng is a Lecturer in Pharmacology at Nankai University, specializing in investigating the molecular mechanisms underlying malignant tumor progression and developing innovative drug therapies. He earned his B.S., M.S., and Ph.D. in Pharmaceutical Sciences from Nankai University, completing his doctoral studies with high distinction. Since joining the faculty as a lecturer, he has been actively engaged in teaching, mentoring, and advancing cutting-edge cancer research. Dr. Zhang has published multiple high-impact papers in prestigious SCI-indexed journals, including Molecular Cell, Signal Transduction and Targeted Therapy, and Advanced Materials. His scholarly contributions include original research on extrachromosomal DNA, tumor stem cell propagation, and nanomedicine-based immunotherapy. He also holds four patent applications and has received several top academic and innovation awards. Through his research and academic leadership, Dr. Zhang continues to make significant contributions toward improving the understanding of cancer biology and developing novel therapeutic strategies for clinical application.

Professional Profile

ORCID

Education

Dr. Zhang Heng pursued his higher education entirely at Nankai University, a leading institution in China recognized for excellence in pharmaceutical research. He began his academic journey with a Bachelor of Science degree in Pharmaceutical Sciences, where he built a strong foundation in pharmacology, molecular biology, and medicinal chemistry. Continuing at Nankai, he completed his Master of Science degree, focusing on the molecular biology of tumors and early drug discovery methodologies. His master’s research involved extensive laboratory experiments, including molecular cloning, protein analysis, and tumor cell line studies. Dr. Zhang then earned his Ph.D. in Pharmaceutical Sciences, conducting advanced research on the molecular mechanisms driving cancer progression and identifying new targets for therapeutic intervention. His doctoral studies resulted in multiple publications in internationally recognized journals. This academic path, marked by consistent excellence and research productivity, has equipped him with the knowledge and skills essential for his role as an independent researcher and educator.

Experience

Following the completion of his doctoral studies, Dr. Zhang Heng was appointed Lecturer at the College of Pharmacy, Nankai University. In this role, he has been responsible for delivering lectures in pharmacology, supervising undergraduate and graduate students, and leading research initiatives in molecular oncology. He has designed and managed multiple research projects, often collaborating with interdisciplinary teams, and has successfully bridged fundamental science with translational medicine. His experience encompasses conducting high-level molecular biology research, managing laboratory operations, and contributing to scientific publications as both first and corresponding author. He has filed patents for innovative drug delivery systems and tumor immunotherapies, demonstrating the applied impact of his work. Beyond laboratory research, Dr. Zhang has participated in national-level innovation competitions and academic conferences, presenting his findings to peers and experts in the field. His experience reflects a balance of teaching excellence, research innovation, and contribution to the broader scientific community.

Research Interest

Dr. Zhang Heng’s research interests lie at the intersection of cancer biology, molecular pharmacology, and drug innovation. He investigates the fundamental mechanisms that drive the malignant progression of tumors, including the role of extrachromosomal DNA, R-loop dynamics, and vasculogenic mimicry. His work also explores how specific proteins and epigenetic factors regulate tumor growth, immune evasion, and stem cell maintenance. In addition to basic research, Dr. Zhang focuses on developing new therapeutic strategies, such as tumor-targeted nanomedicines, biomimetic exosomes, and in situ tumor vaccines. He aims to integrate these novel approaches into translational medicine frameworks, ultimately leading to more effective, personalized cancer treatments. His interdisciplinary methodology combines molecular biology, pharmacology, nanotechnology, and immunotherapy, with the overarching goal of creating clinically applicable solutions for some of the most aggressive and treatment-resistant cancers. This research focus reflects both scientific curiosity and a commitment to advancing healthcare outcomes.

Award

Dr. Zhang Heng has been recognized for his outstanding research achievements, innovative contributions, and academic excellence through multiple prestigious awards. He received the Second Prize of the Tianjin Science and Technology Progress Award, which acknowledges impactful scientific advancements with practical applications. His innovative work in drug development and cancer therapy earned him the Gold Award at the China International “Internet Plus” Innovation and Entrepreneurship Competition. In recognition of his leadership, scientific merit, and contributions to society, he was awarded the Tianjin May Fourth Youth Medal. While a student, Dr. Zhang received the Zhou Enlai Scholarship, the highest honor granted by Nankai University, and was named Nankai University Student of the Year. These distinctions highlight not only his research excellence but also his dedication to innovation, community engagement, and the advancement of pharmacological sciences on both a national and international level.

Top Noted Publication

Dr. Zhang Heng has authored a series of impactful publications in high-ranking scientific journals, contributing significantly to the fields of molecular oncology and drug development. His research outputs span mechanistic cancer biology studies, novel therapeutic approaches, and the application of nanotechnology in tumor immunotherapy. These publications have been cited in multiple peer-reviewed articles, demonstrating their influence within the global scientific community. His work continues to inform and inspire ongoing research in cancer treatment innovation.

Publications list (single-line prompt):

Title: Extrachromosomal DNA biogenesis is dependent on DNA looping and religation by YY1–Lig3–PARylation complex
Journal: Molecular Cell
Year: 2025

Title: MTA2 triggered R-loop trans-regulates BDH1-mediated β-hydroxybutyrylation and potentiates propagation of hepatocellular carcinoma stem cells
Journal: Signal Transduction and Targeted Therapy
Year: 2021

Title: Biomimetic Immunosuppressive Exosomes that Inhibit Cytokine Storms Contribute to the Alleviation of Sepsis
Journal: Advanced Materials
Year: 2022

Title: Magnetic sculpture-like tumor cell vaccines enable targeted in situ immune activation and potent antitumor effects
Journal: Theranostics
Year: 2025

Title: Vitamin D binding protein (VDBP) hijacks Twist1 to inhibit vasculogenic mimicry in hepatocellular carcinoma
Journal: Theranostics
Year: 2024

Conclusion

Dr. Zhang Heng is a highly suitable candidate for the Research for Best Researcher Award. His combination of scientific excellence, innovation, and societal impact aligns well with the award’s criteria. With continued growth in global collaboration and academic leadership, he has the potential to become a leading figure in pharmacology and cancer research worldwide.

 

Guoyin Liu | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Guoyin Liu | Molecular Biology | Best Researcher Award 

Attending physician and associate professor, at Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.

Dr. Guoyin Liu is an accomplished attending physician and associate professor at Jinling Hospital, Nanjing University, renowned for his expertise in orthopedics, inflammatory signaling, and regenerative medicine. Holding a PhD from Nanjing Medical University, he specializes in endoplasmic reticulum (ER) molecular chaperones such as GRP78/Bip and their role in critical orthopedic conditions including rheumatoid arthritis, osteoarthritis, chronic wounds, and periprosthetic osteolysis. Beyond molecular research, he pioneers innovative treatments like extracorporeal shock wave therapy, needle-knife therapy, and restorative laminoplasty techniques for spinal reconstruction. His translational research bridges basic science with clinical applications, contributing to novel interventions for musculoskeletal disorders. With an impressive portfolio of high-impact publications, key research grants, patents, and editorial board memberships, Dr. Liu exemplifies a commitment to advancing orthopedic science and patient care. His innovative contributions continue to shape the future of orthopedic diagnostics and treatments, fostering breakthroughs in bone regeneration and inflammatory disease management.

Professional Profile

Scopus

ORCID

🎓 Education 

Dr. Liu completed his PhD at Nanjing Medical University, focusing on the molecular mechanisms underlying inflammatory bone loss and tissue degeneration. His academic foundation integrates basic medical sciences, clinical orthopedics, and bioengineering approaches, enabling him to investigate complex orthopedic diseases at the cellular and molecular levels. During his training, he mastered advanced experimental techniques, including finite element biomechanical analysis, tissue engineering methodologies, and translational clinical trials. Dr. Liu expanded his academic horizon through specialized workshops in regenerative medicine, musculoskeletal biomechanics, and immunomodulation therapies. His education laid the groundwork for his pioneering research on GRP78/Bip signaling pathways in chronic musculoskeletal diseases. By blending clinical insights with experimental rigor, he has become a leading voice in developing innovative therapies for orthopedic patients. His educational journey reflects a seamless integration of theory and practice, empowering him to address both clinical challenges and fundamental biomedical questions with cutting-edge research approaches.

💼 Experience 

With over 15 years of combined clinical and research experience, Dr. Guoyin Liu has established himself as a leading expert in orthopedic surgery, translational research, and regenerative medicine. As an Attending Physician and Associate Professor at Jinling Hospital, he manages complex cases such as spinal deformities, chronic joint diseases, and osteolytic conditions. His academic tenure includes supervising multidisciplinary research projects funded by National Natural Science Foundation of China and provincial grants focusing on inflammatory pathways and bone regeneration. He has innovated surgical techniques like restorative laminoplasty with miniplate fixation, which has improved postoperative spinal stability and patient recovery outcomes. His extensive clinical experience is complemented by editorial board appointments in reputed international journals, reflecting his scientific leadership. Dr. Liu’s dual role as a clinician and researcher enables him to directly translate benchside discoveries into bedside applications, ensuring tangible benefits for patients suffering from chronic orthopedic disorders.

🔬 Research Interests 

Dr. Liu’s research is centered on cellular stress responses and inflammatory pathways in orthopedic diseases, with a special focus on endoplasmic reticulum molecular chaperones (GRP78/Bip) and their dual intracellular and extracellular roles. He investigates how particle-induced osteolysis, rheumatoid arthritis, and intervertebral disc degeneration are driven by inflammatory cascades, aiming to develop targeted molecular therapies. Another significant area of his research explores chemical chaperones like 4-Phenylbutyrate, which mitigate ER stress and improve bone regeneration. Dr. Liu also advances biomechanical engineering solutions, analyzing finite element models to improve spinal fixation techniques. Additionally, he integrates shockwave therapy, corticosteroid injections, and minimally invasive interventions for managing chronic orthopedic pain. His translational approach bridges basic science, bioengineering, and clinical orthopedics, leading to innovative strategies that reduce surgical complications and improve musculoskeletal repair. Through his research, Dr. Liu aims to redefine the diagnosis, prevention, and treatment of bone and joint diseases in aging populations.

🏆 Awards & Honors 

Dr. Liu has received numerous academic and clinical recognitions for his groundbreaking work in orthopedics. He was honored with the Third Prize for Military Science & Technology Progress for elucidating the TIM3 signaling pathway in osteoarthritis during military training-related injuries. Additionally, he received the Third Award for Nanjing Science & Technology Progress for identifying the role of recombinant BMP-1 in periprosthetic osteolysis. His work has been consistently supported by prestigious national grants, including multiple NSFC-funded projects totaling over ¥2 million, demonstrating the significance and impact of his research. Beyond awards, his appointment to editorial boards of leading orthopedic and bioengineering journals highlights his global recognition in the field. Dr. Liu’s innovative surgical methods, such as restorative laminoplasty with H-shaped miniplates, have been acknowledged as transformative in spinal reconstruction. These accolades collectively recognize his outstanding contribution to orthopedic research, surgical innovation, and patient care.

📚 Top Noted Publications 

Dr. Liu’s publications span orthopedic biomechanics, inflammatory pathways, and regenerative medicine, widely cited in the global research community. Key works include:

🛠️ Biomechanical Stability of Miniplates in Restorative Laminoplasty

Title: Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study
Authors: Guoyin Liu, Weiqian Huang, Nannan Leng, Peng He, Xin Li, Muliang Lin, Zhonghua Lian, Yong Wang, Jianmin Chen, Weihua Cai
Journal: Bioengineering (Basel)
Year / Volume / Issue: 2024; 11(5):519
DOI: 10.3390/bioengineering11050519 PubMed+15MDPI+15ResearchGate+15
Highlights: Used a finite element model (L2–L4) to compare H‑shaped, L‑shaped, and two‑hole miniplates. The H‑shaped design showed superior stability, especially in axial rotation and flexion/extension PubMedMDPI.

Biomechanical Reconstruction of the Posterior Complex in Laminoplasty

Title: Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates
Authors: Jianmin Chen, Guoyin Liu, Tianyi Bao, Yuansheng Xu, Hu Luo, Yu Wu, Dawei Cai, Feng Qin, Jianning Zhao
Journal: BMC Musculoskeletal Disorders
Year / Volume / Article: 2023; 24(1):298
DOI: 10.1186/s12891-023-06380-3 PubMedOUCI
Highlights: Cadaveric 3D-printed L4 models under static/dynamic loading. H‑shaped miniplates outperformed L‑shaped and two-hole systems, preventing lamina collapse or plate breakage PubMedResearchGate.

Macrophage Apoptosis Pathways in Periprosthetic Osteolysis

Title: Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthetic osteolysis
Journal: APMIS
Year: 2017
Details: Demonstrates that wear particles at implant interfaces accelerate macrophage apoptosis via ER-stress and mitochondrial dysfunction, which exacerbates osteolysis PubMedPhysiology Journals.

Endoplasmic Reticulum Stress and Osteolysis

Title: Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis
Authors: Guoyin Liu, Naicheng Liu, Yuansheng Xu, Yunfan Ti, Jiangning Chen, Jianmin Chen, Junfeng Zhang, Jianning Zhao
Journal: Cell and Tissue Research
Year / Issue / Pages: 2016 Feb; 363(2):427–447
DOI: 10.1007/s00441-015-2205-9 PubMedSpringerLink
Highlights: Particle debris induces ER stress in macrophages, triggering IRE1α, GRP78/BiP, NF‑κB pathways, elevating pro-inflammatory cytokines (TNF‑α, IL‑1β, IL‑6). 4‑PBA effectively reduced ER-stress and osteolysis in murine models .

Conclusion

Dr. Guoyin Liu’s outstanding contributions to orthopedic research, innovative therapies, and patented medical devices make him a highly suitable candidate for the Best Researcher Award. His work bridges basic molecular research with clinical applications, significantly improving diagnosis, treatment, and rehabilitation of complex musculoskeletal disorders.