Shanshan Li | Molecular Biology | Excellence in Research Award

Dr. Shanshan Li | Molecular Biology | Excellence in Research Award

Assistant Researcher | Zhejiang University | China

Dr. Shanshan Li is a dedicated researcher specializing in the chemistry, processing, and bioactivity of bee-derived products, with a strong emphasis on propolis, royal jelly, and protein–polyphenol systems. Her work bridges food chemistry, molecular biology, and functional ingredient development to uncover how processing technologies—such as ultrasound treatment and enzymatic hydrolysis—alter protein structures and enhance antioxidant, anti-inflammatory, and immunomodulatory activities. She has significantly advanced the understanding of protein–polyphenol interactions and their role in improving the functional properties of natural compounds. Dr. Li employs advanced analytical approaches, including proteomics, transcriptomics, and bioinformatics, to investigate molecular mechanisms and cellular pathways influenced by bee product components. Her research also includes comparative studies of milk fat globule membrane proteins across animal species, contributing to broader innovations in food science and bioactive ingredient development. With 998 citations across 943 documents, 50 publications, and an h-index of 21, Dr. Li has established a strong scientific presence. Her contributions support the development of health-promoting ingredients and the translation of natural bioactives into functional foods.

Profiles: Scopus

Featured Publications

Ultrasound-induced modifications in structure, antioxidant activity and functionality of whey protein isolate–propolis polyphenol conjugates. Food Chemistry.

Integrated transcriptomics and network pharmacology reveal the mechanism of poplar-type propolis on the mouse mastitis model. Nutrients.

Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis. Food Science and Human Wellness.

Royal jelly proteins and their derived peptides: Preparation, properties, and biological activities. Journal of Agricultural and Food Chemistry.

Milk fat globule membrane proteins among buffalo breeds via TMT proteomics. Food Research International.

 

Tereza Nesporova | Molecular Biology | Best Researcher Award

Mrs. Tereza Nesporova | Molecular Biology | Best Researcher Award 

Mrs. Tereza Nesporova, at Czech Agrifood Research Center, Czech Republic.

Tereza Nešporová is a dedicated researcher specializing in proteomics and mass spectrometry, with a strong focus on plant stress responses. She holds a Master’s degree from UCT Prague and is currently pursuing a Ph.D., working on proteomic analysis of plant stress. With extensive experience in biochemical research, suborganelle proteomics, and metabolomics, she has contributed significantly to understanding drought adaptation in plants. Tereza has worked in leading research institutions, including the Czech Agrifood Research Center, Institute of Organic Chemistry and Biochemistry of the CAS, and the Luxembourg Institute of Science and Technology. She has received multiple awards for her research presentations and has been involved in high-impact projects funded by CRI. Her work includes advanced protein analysis techniques like HDX-MS, cyclic ion mobility MS, and MALDI-TOF MS. Tereza actively contributes to international conferences and publishes in top-tier journals.

Professional Profile

Scopus

ORCID

🎓 Education 

Tereza Nešporová pursued her Master of Science at UCT Prague (2014–2016), where she focused on surface mapping of the HIV matrix protein using mass spectrometry detection. Her research provided insights into protein characterization through MS-based techniques. Since 2016, she has been a Ph.D. candidate at UCT Prague, specializing in proteomic analysis of plant stress, particularly drought adaptation mechanisms in crops like wheat. Her doctoral research involves quantitative proteomics, phosphoproteomics, and metabolomics to understand suborganelle proteome dynamics in stressed plants. Her expertise in mass spectrometry-based proteomics enables her to study plant responses at the molecular level. She has also undertaken research visits and collaborations with prestigious European institutes, strengthening her multidisciplinary expertise. Tereza’s work bridges the gap between biochemistry, plant physiology, and analytical chemistry, making significant contributions to the field of plant proteomics and environmental adaptation.

💼 Experience 

🔹 Czech Agrifood Research Center (2018–present) – Research & development specialist, focusing on proteomic and metabolomic analysis in plant stress biology. She specializes in suborganelle proteomics and drought adaptation studies.

🔹 Institute of Organic Chemistry and Biochemistry of the CAS (2024–present) – Works as a Structure Proteomics Specialist, utilizing HDX-MS, native MS, and cyclic ion mobility MS to analyze biomolecular structures.

🔹 Luxembourg Institute of Science and Technology (2018–2019) – Conducted proteomic and metabolomic research within the Environmental Research and Innovation division.

🔹 UCT Prague (2019–2022) – Scientific-pedagogical worker, responsible for MALDI-TOF MS service and biochemical research.

Her expertise spans biomolecular analysis, mass spectrometry, structural proteomics, and biochemical engineering, making her a key contributor to plant resilience research and biotechnological advancements.

🔬 Research Interests 

Tereza Nešporová’s research focuses on proteomics, mass spectrometry, and plant stress adaptation mechanisms. She specializes in:

🌱 Suborganelle Proteomics – Investigating chloroplasts and nuclear proteomes to uncover plant adaptation strategies to drought.
🧬 Mass Spectrometry in Structural Biology – Utilizing HDX-MS, native MS, and cyclic ion mobility MS for detailed protein interaction studies.
💦 Plant Stress Physiology – Examining drought-induced proteomic changes in wheat, with a focus on phosphoproteomics and metabolomics.
🛠 Analytical Biochemistry – Developing novel MS-based methods for protein characterization in environmental and agricultural sciences.

Her research integrates molecular biology, analytical chemistry, and computational proteomics, leading to new insights into crop resilience and environmental sustainability.

🏆 Awards 

🥇 1st place poster presentation9th Czech MS Conference (2021) for research on suborganelle proteomics and plant drought response.
🥈 2nd-3rd place poster award6th Czech MS Conference (2017) for her work on HIV matrix protein mapping using MS.
🎓 CRI Grant for Young Scientists (2020–2022) – Two-time recipient for projects on phosphoproteomics and suborganelle proteomics in wheat drought adaptation.
🔬 Recognized expert in mass spectrometry – Serves as a service engineer for cyclic ion mobility MS, supporting research in structural proteomics.

Her contributions to plant proteomics, biomolecular analysis, and advanced MS techniques have earned her a strong reputation in the scientific community.

📚Top Noted  Publications 

Purkrtova, S., et al. (2022)Microbial Contamination of Photographic and Cinematographic Materials, Microorganisms

  • Citations: 12
  • Summary: This study investigates microbial contamination affecting photographic and cinematographic materials, identifying key microorganisms responsible for deterioration. It provides insights into conservation strategies for historical archives and cultural heritage preservation.

2️⃣ Koval, D., et al. (2022)Formation of dihydrophenolic acids and aroma-active volatile phenols, European Food Research and Technology

  • Citations: 9
  • Summary: This research focuses on the formation of dihydrophenolic acids and volatile phenols that contribute to food aroma and quality. It discusses biochemical pathways, enzymatic transformations, and their implications for food processing and sensory evaluation.

3️⃣ Nešporová, T., et al. (2024)Water-saving and water-spending strategy in wheat drought response, Plant Stress

  • Citations: 5
  • Summary: The study examines how wheat employs different physiological strategies—water-saving or water-spending—in response to drought conditions. Using proteomic and metabolomic analyses, the researchers identify key molecular markers and adaptive traits that enhance drought tolerance in wheat.

4️⃣ Kosová, K., et al. (2025)How to survive mild winters: Cold acclimation in winter wheat, Plant Physiology and Biochemistry (In Press)

  • Summary: This upcoming paper explores how winter wheat adapts to mild winter conditions through cold acclimation. It delves into metabolic and proteomic responses that enable winter wheat to maintain resilience in fluctuating temperatures, providing insights for crop improvement under climate change.

Conclusion

Tereza Nešporová is a highly qualified researcher with a strong record in proteomics, mass spectrometry, and plant stress responses. Her publications, awards, and international collaborations make her a strong candidate for the Best Researcher Award. While she could further enhance her profile through grant leadership and broader scientific engagement, her contributions to the field are noteworthy and impactful.