Seyithan TAYSI | Molecular Biology | Best Researcher Award

Prof. Dr. Seyithan TAYSI | Molecular Biology | Best Researcher Award 

Professor | Gaziantep University | Turkey

Prof. Dr. Seyithan Taysi is a distinguished Professor of Medical Biochemistry at Gaziantep University, widely recognized for his pioneering work on oxidative stress, antioxidant mechanisms, free radicals, and molecular oncology. He earned his Ph.D. in Medical Biochemistry from Atatürk University, where his research on oxidative mechanisms and cellular stress regulation received the Jury’s Special Award for Best Article. Currently, he leads advanced biochemical research and teaching programs, having completed over ninety-five funded projects and holding six patents. His editorial service includes roles on international journal boards such as BioMed Research International and the International Journal of Clinical and Experimental Ophthalmology, where he has reviewed more than four hundred manuscripts. Prof. Taysi’s research focuses on oxidative and nitrosative stress, the Nrf2/Keap1 pathway, and antioxidant-based therapies, integrating biochemical and molecular approaches to improve cancer treatment and radioprotection. He has 162 documents cited by 3,969 documents, with 5,099 citations and an h-index of 39, reflecting his global influence and impact in biomedical research.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

Taysi, S., et al. Oxidative stress modulation in cancer therapy. Free Radical Biology & Medicine. Cited by 45 articles.

Taysi, S., et al. Phytotherapeutic agents against radiation-induced cellular damage. Antioxidants (Basel). Cited by 38 articles.

Taysi, S., et al. Nrf2/Keap1 pathway as a therapeutic target in oxidative diseases. Frontiers in Molecular Biosciences. Cited by 62 articles.

Taysi, S., et al. Role of antioxidants in radiotherapy protection. BioMed Research International. Cited by 55 articles.

Taysi, S., et al. Oxidative stress biomarkers in cancer patients. Clinical Biochemistry. Cited by 97 articles.

Ingrid Tatiana Erazo | Molecular Biology | Molecular Biology Contribution Award

Dr. Ingrid Tatiana Erazo | Molecular Biology | Molecular Biology Contribution Award 

Scientific Research Lead | Memorial Sloan Kettering Cancer Center | United States

Dr. Ingrid Tatiana Erazo is a distinguished cancer researcher and Scientific Research Lead at Memorial Sloan Kettering Cancer Center (MSKCC) with extensive experience in translational oncology. She earned her PhD Summa Cum Laude in Biochemistry and Molecular Biology from the Autonomous University of Barcelona, where she pioneered research on the ERK5 signaling pathway. Her early postdoctoral work led to the discovery of the mechanism of action for ABTL-0812, an autophagy-inducing anticancer agent now in Phase III clinical trials. Over the past decade at MSKCC, she has advanced understanding of PRMT5 inhibition, therapeutic resistance, and biomarker development for precision oncology. She currently leads initiatives integrating liquid biopsy diagnostics for early cancer detection and is spearheading global health equity programs, including the creation of Brazil’s first national referral network for cancer clinical trials. Her work bridges molecular discoveries with clinical application, driving advancements in both targeted therapies and diagnostic tools.

Professional Profile

Scopus

ORCID

Google Scholar

Education

Dr. Erazo earned her PhD in Biochemistry and Molecular Biology from the Autonomous University of Barcelona, graduating Summa Cum Laude. Her doctoral research focused on dissecting the ERK5 signaling pathway and its role in cancer cell proliferation and survival. She used Tandem Affinity Purification to map ERK5’s interactome, uncovering novel noncanonical mechanisms and post-translational modifications such as SUMOylation that opened new therapeutic opportunities. Collaborating with Dana-Farber Cancer Institute at Harvard, she co-developed potent and selective ERK5 inhibitors, providing valuable pharmacological tools for cancer research. Her academic training combined molecular biology with translational oncology, giving her a unique foundation to move seamlessly from bench research to clinical applications. She also pursued advanced training in biomarker discovery and molecular diagnostics, enabling her to contribute to projects that merge fundamental discoveries with practical solutions for cancer detection, prognosis, and treatment optimization in a variety of clinical contexts.

Experience

Dr. Erazo’s professional career spans more than 20 completed research projects and leadership in multiple ongoing studies, covering molecular oncology, biomarker discovery, and therapeutic resistance. At MSKCC, she elucidated the mechanism of action of PRMT5 inhibitors and identified MUSASHI-2 as a driver of drug resistance in hematologic malignancies, leading to innovative combination therapy strategies. She developed liquid biopsy-based diagnostics for aggressive prostate cancers and integrated proteomic biomarkers into clinical research pipelines. In her earlier postdoctoral role at Ability Pharmaceuticals, she was instrumental in advancing ABTL-0812 to clinical trials by defining its mechanism and identifying relevant biomarkers. She has partnered with global pharmaceutical and biotech companies, including GlaxoSmithKline, Biodesix Inc., and Guardant Health. Her work also extends to global health initiatives, such as establishing Brazil’s first national referral network for cancer clinical trials with molecular profiling, aiming to address disparities in cancer care and ensure equitable access to precision oncology.

Research Interest

Dr. Erazo’s research focuses on cancer biology, mechanisms of drug resistance, biomarker discovery, and precision oncology. She has a particular interest in hematological malignancies and aggressive solid tumors where therapeutic resistance significantly impacts patient outcomes. Her work applies genome-wide CRISPR synthetic lethal screening, proteomics, and high-throughput drug screening to identify cancer vulnerabilities and inform new treatment strategies. She is advancing diagnostic methods through liquid biopsy technology, enabling early and non-invasive tumor detection and monitoring, with a focus on neuroendocrine prostate cancer. Dr. Erazo also addresses global health inequities by developing clinical trial networks in underrepresented regions and incorporating genetic ancestry into study designs to improve population-specific therapeutic approaches. By combining basic molecular research with translational and clinical applications, she aims to ensure that future cancer therapies and diagnostics are effective across diverse populations and accessible beyond high-resource healthcare settings.

Awards

Dr. Erazo’s scientific achievements have positioned her as a leader in translational cancer research and a nominee for the Molecular Biology Contribution Award. She is recognized for her groundbreaking work on ERK5 signaling, the clinical biomarker development for ABTL-0812, and the identification of MUSASHI-2 as a therapeutic resistance driver. Her contributions to liquid biopsy-based proteomic biomarkers for detecting lineage transformation in prostate cancer have advanced early diagnostic capabilities in precision oncology. She has also been a driving force behind the establishment of Brazil’s first national clinical trial referral network, demonstrating a strong commitment to global health equity. Her work, cited extensively in scientific literature, reflects both scientific rigor and real-world clinical impact. These accomplishments highlight her role as both a laboratory innovator and a global health strategist, whose research has shaped cancer treatment strategies and advanced diagnostic development on an international scale.

Top Noted Publications

Dr. Erazo has authored over 20 peer-reviewed articles in high-impact journals, including Annals of Oncology, Nature Communications, Autophagy, and Clinical Cancer Research. Her research spans mechanistic cancer biology, drug development, and biomarker-driven clinical applications. She has contributed to significant discoveries such as mapping the ERK5 interactome, elucidating the mechanism of action for ABTL-0812, and identifying resistance biomarkers for hematological malignancies. Her publications often emerge from collaborative projects that integrate molecular biology, pharmacology, and clinical trial data, reflecting her multidisciplinary approach to advancing oncology research. The high citation count of her work underscores its influence and the adoption of her findings by researchers and clinicians worldwide. Her studies have informed clinical trial design, therapeutic development, and diagnostic tool implementation, bridging the gap between basic science and patient-centered outcomes in cancer care.

Selected Publications (Single-Line Format)

Title: Erazo T, et al. The new antitumor drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels
Journal: Nature Communications
Cited by 312

Title: Erazo T, et al. Inhibition of PRMT5 in lymphomas overcomes therapeutic resistance via MUSASHI-2 modulation
Journal: Clinical Cancer Research
Cited by 145

Title: Erazo T, et al. ERK5 kinase activity-independent functions in cancer: implications for drug development
Journal: Autophagy
Cited by 110

Title: Erazo T, et al. Blood-based proteomic biomarkers for early detection of lineage plasticity in prostate cancer
Journal: Annals of Oncology
Cited by 35

Title: Erazo T, et al. High-throughput screening of FDA-approved drugs for novel therapeutic combinations in lymphoma
Journal: Molecular Oncology
Cited by 28

Conclusion

Dr. Ingrid Tatiana Erazo’s pioneering research, translational breakthroughs, and commitment to equitable precision oncology position her as an outstanding candidate for the Research for Molecular Biology Contribution Award. Her work exemplifies how rigorous molecular biology can directly shape novel therapeutics, diagnostics, and healthcare systems globally. Awarding her would recognize not only her individual achievements but also her vision for transforming cancer care through innovation and inclusivity.

 

Partha Sarathi Nial | B-Z DNA transition | Best Researcher Award

Mr . Partha Sarathi Nial | B-Z DNA transition | Best Researcher Award 

PhD Scholar , CSIR-Institute of Minerals and Materials Technology , India

Partha Sarathi Nial is a dedicated Ph.D. scholar in Biological Science at the CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India. His research focuses on DNA nanotechnology, specifically on sequence-specific conformational switching in linear and branched DNA structures. With a strong foundation in biotechnology and extensive experience in both academic research and industry, Partha is committed to advancing our understanding of DNA’s structural dynamics and their potential applications in gene regulation and therapeutics.

Profile

Scopus

Strengths for the Award

  1. Advanced Research Focus: Partha Sarathi Nial’s doctoral research on “Sequence-specific conformational switching in linear and branched DNA structures” showcases a high level of expertise in a cutting-edge area of biological science, particularly in DNA nanotechnology and its applications in gene regulation and therapeutic approaches. His focus on B-Z DNA transition and G-Quadruplex formation is not only innovative but also highly relevant to understanding complex biological processes and diseases like cancer and Alzheimer’s.
  2. Publications in High-Impact Journals: Partha has multiple publications in reputed journals with high impact factors, including the Journal of Molecular Liquids and the International Journal of Biological Macromolecules. These publications underline the quality and impact of his research work in the scientific community.
  3. Awards and Recognitions: Partha’s achievements, such as securing the CSIR-NET JRF (AIR-100) in Life Sciences, demonstrate his strong academic foundation and recognition by peers. Being selected for positions in prestigious organizations like Thyrocare Technologies Ltd. further attests to his credibility and potential.
  4. Research Versatility: Partha’s diverse research experience, ranging from clinical research coordination to plant tissue culture and drug analysis, shows his adaptability and broad expertise in various domains of biological science.
  5. Professional Development: Participation in numerous seminars, workshops, and webinars, including poster presentations at international conferences, reflects his commitment to continuous learning and dissemination of knowledge.

Areas of Improvement

  1. Practical Application Focus: While Partha’s research is highly theoretical and advanced, greater emphasis on practical applications and translational research might further strengthen his candidacy. This could involve exploring more collaborative projects with industry or interdisciplinary teams to apply his findings in real-world scenarios.
  2. Leadership and Collaboration: Although Partha has demonstrated strong research capabilities, leadership roles in collaborative research projects or mentoring junior researchers could enhance his profile. Active involvement in large-scale, multi-disciplinary projects might also broaden his impact.
  3. Broader Impact: Expanding the outreach and societal impact of his research beyond the academic community could be beneficial. Engaging in public science communication, community outreach, or contributing to policy discussions on health and biotechnology could elevate his profile.

     Education

    Partha Sarathi Nial’s academic journey is marked by consistent excellence in the field of biological sciences. He earned his Ph.D. in Biological Science from the CSIR-Institute of Minerals and Materials Technology, focusing on the intricate mechanisms of B-Z DNA transition and its implications in various human diseases. Before his doctoral studies, he completed his B.Ed. in Biological Science from Andhra University and both his M.Sc. and B.Sc. in Biotechnology from Ravenshaw University and Utkal University, respectively, graduating with first-division honors.

     Research Experience

    Partha’s research expertise is deeply rooted in the molecular dynamics of DNA structures. His doctoral research explores the B-Z DNA transition, G-Quadruplex formation, and the impact of Rare Earth Elements on DNA conformations. He has also contributed to projects on gene regulation, therapeutic applications, and DNA nanostructure assembly. His M.Sc. dissertation focused on the micropropagation of Uraria picta, and he has gained hands-on experience in biochemical and bacteriological analysis of dairy products, clinical research on diarrhea, and drug quality evaluation.

     Research Interests

    Partha’s research interests lie at the intersection of molecular biology, nanotechnology, and structural biophysics. He is particularly fascinated by the conformational switching of DNA structures, such as B-Z DNA transitions and G-quadruplex formations, which have significant implications in gene function regulation and nanotechnological applications. His work aims to uncover the underlying mechanisms of these transitions and explore their potential in medical and therapeutic innovations.

     Awards and Achievements

    Partha’s academic and research endeavors have been recognized with several prestigious awards. He secured the Junior Research Fellowship (CSIR-NET JRF) with an impressive All India Rank of 100 in Life Sciences in 2018. Additionally, he was selected as a Clinical Research Coordinator by Consortium Clinical Research Pvt Ltd. and as an Executive in Business Development by Thyrocare Technologies Ltd., showcasing his versatile expertise in both research and industry.

     Publications

    Partha Sarathi Nial has contributed to several high-impact publications in reputable scientific journals. Here are some of his key works:

    1. Nial, P. S., Sathyaseelan, C., Bhanjadeo, M. M., Tulsiyan, K. D., Rathinavelan, T., & Subudhi, U. (2024). Praseodymium chloride-mediated B-to-Z DNA transition in pyrimidine-purine repeat sequences: Simulation and biophysical study. Journal of Molecular Liquids, 125173. Link. Cited by: 5 articles.
    2. Nial, P. S., & Subudhi, U. (2024). Zeta potential of Z-DNA: A new signature to study BZ transition in linear and branched DNA. International Journal of Biological Macromolecules, 266, 131238. Link. Cited by: 3 articles.
    3. Satapathy, S. N., Nial, P. S., Tulsiyan, K. D., & Subudhi, U. (2024). Light rare earth elements stabilize G-quadruplex structure in variants of human telomeric sequences. International Journal of Biological Macromolecules, 254, 127703. Link. Cited by: 4 articles.
    4. Monalisa, K., Behera, S., Pidika, S. P., Nial, P. S., & Naik, S. K. (2024). In vitro propagation and assessment of genetic fidelity of Blepharispermum subsessile DC.: An endangered medicinal plant of India. Vegetos, 1-10. Link. Cited by: 2 articles.
    5. Baral, B., Nial, P. S., & Subudhi, U. (2023). Enhanced enzymatic activity and conformational stability of catalase in presence of tetrahedral DNA nanostructures: A biophysical and kinetic study. International Journal of Biological Macromolecules, 242, 124677. Link. Cited by: 6 articles.
    6. Gourai, M., Nayak, A. K., Nial, P. S., Satpathy, B., Bhuyan, R., Singh, S. K., & Subudhi, U. (2023). Thermal plasma processing of Moringa oleifera biochars: Adsorbents for fluoride removal from water. RSC Advances, 13(7), 4340-4350. Link. Cited by: 7 articles.
    7. Bhanjadeo, M. M., Nial, P. S., Sathyaseelan, C., Singh, A. K., Dutta, J., Rathinavelan, T., & Subudhi, U. (2022). Biophysical interaction between lanthanum chloride and (CG) n or (GC) n repeats: A reversible B-to-Z DNA transition. International Journal of Biological Macromolecules, 216, 698-709. Link. Cited by: 9 articles

    Conclusion

    Partha Sarathi Nial is a highly deserving candidate for the Research for Best Researcher Award. His strong research background in DNA nanotechnology, coupled with significant publications and recognitions, makes him a standout candidate. To further enhance his profile, focusing on practical applications, taking on leadership roles in collaborative research, and broadening the societal impact of his work are recommended. Overall, his current achievements and potential for future contributions to science make him a suitable and strong contender for the award.