Bong-Gyu Mun | Biochemistry | Best Researcher Award

Prof. Bong-Gyu Mun | Biochemistry | Best Researcher Award 

Assistant professor, at Chungbuk National University, South Korea.

Dr. Bong-Gyu Mun is an accomplished plant biologist and Assistant Professor in the Department of Environmental and Biological Chemistry at Chungbuk National University, South Korea. With a strong background in plant functional genomics and applied life sciences, he has extensively contributed to plant stress physiology, nanoparticle-based plant enhancement, and microbial interactions. Dr. Mun has held several prestigious research roles, including Postdoctoral and Research Professorship positions at Kyungpook National University and the Temasek Life Sciences Laboratory. His research is recognized internationally through numerous publications in top-tier journals, focusing on improving crop resilience through innovative biotechnological and biochemical strategies. Dr. Mun’s work bridges plant molecular biology with sustainable agriculture, aiming to address pressing global food security issues under climate stress. He remains deeply committed to mentoring students, promoting collaborative science, and translating his findings into practical applications in agriculture and crop biotechnology.

Professional Profile

Scopus

ORCID

Education 

Dr. Mun’s academic journey showcases a strong progression in the field of plant sciences. He earned his Bachelor’s and Master’s degrees in Applied Life Science from GyeongSang National University in 2010 and 2012, respectively. His master’s research focused on stress signaling pathways in plants. He further deepened his expertise with a Ph.D. in Plant Functional Genomics from Kyungpook National University in August 2017, where he specialized in understanding molecular mechanisms that regulate plant responses to abiotic stresses. His doctoral research laid the foundation for his current investigations into nanoparticle applications and microbial interactions in enhancing plant resilience. Throughout his academic career, Dr. Mun has consistently demonstrated excellence, participating in research programs that emphasize cutting-edge plant biotechnology and environmental stress adaptation.

 Experience 

Dr. Mun has gained extensive experience in plant molecular biology and biotechnology through a series of progressively advanced academic roles. He began as a Postdoctoral Researcher at the Institute of Agricultural Science and Technology, Kyungpook National University (2017–2018, 2020–2021), and further contributed to the BK21 Plus Project at the same university (2018–2019). He also expanded his global exposure by working at Temasek Life Sciences Laboratory in Singapore (2019–2020), engaging in collaborative research on stress-resistant crops. From 2021 to 2023, he served as a Research Professor at Kyungpook National University. In 2023, Dr. Mun was appointed Assistant Professor at Chungbuk National University, where he now leads research and teaching activities focused on environmental and biological chemistry. His experience spans physiological, biochemical, and genetic approaches in plant science, underscoring his interdisciplinary expertise and leadership in plant stress adaptation.

Research Interest 

Dr. Mun’s research interests revolve around plant stress physiology, nanobiotechnology, and plant–microbe interactions. He explores how plants respond to abiotic stressors such as drought, salinity, and heavy metals, focusing on developing stress-resilient crops through biochemical modulators like nitric oxide, melatonin, and chitosan-based nanoparticles. His work investigates the molecular crosstalk between signaling pathways and the synergistic effects of bioformulations like fulvic acid, GSNO, and microbial biostimulants (e.g., PGPR). Recently, he has pioneered research in using nanocarriers for targeted delivery of stress-alleviating compounds, contributing significantly to sustainable agriculture. Dr. Mun is also intrigued by the role of rhizospheric bacteria and how they modulate hormonal and antioxidant responses in plants. Through integrative molecular and physiological approaches, he aims to bridge basic plant science with practical crop management techniques that can help combat the effects of climate change and ensure food security.

 Award 

Although specific individual awards are not listed in the given data, Dr. Bong-Gyu Mun’s track record of publication in high-impact journals and appointments at leading research institutions is evidence of his recognition in the academic and scientific community. His appointment as an Assistant Professor at Chungbuk National University in 2023 and his previous Research Professorship highlight the trust placed in his academic leadership. His work has also been published multiple times in prestigious international journals such as International Journal of Molecular Sciences, Physiologia Plantarum, Frontiers in Plant Science, and BMC Plant Biology, reflecting both the novelty and impact of his research. These achievements stand as strong indicators of his contributions to advancing plant biotechnology and stress physiology. Dr. Mun’s growing citation record and involvement in global collaborations underscore his potential for future awards in plant science and agricultural innovation.

Top Noted Publications

Dr. Bong-Gyu Mun has authored numerous peer-reviewed publications focused on plant tolerance mechanisms against environmental stress. His recent works include:

1. Enhancing Soybean Salt Tolerance with GSNO and Silicon

  • Authors: Meshari Winledy Msarie, Nusrat Jahan Methela, Mohammad Shafiqul Islam, et al.

  • Journal: International Journal of Molecular Sciences

  • Date/Volume: 2025 Jan 13; 26(2):609

  • DOI / PMID: DOI: 10.3390/ijms26020609; PubMed PMID available Kyungpook National University(KNU)+9PubMed+9Kyungpook National University(KNU)+9

  • Summary: The study explores how S-nitrosoglutathione (GSNO) combined with silicon enhances salinity tolerance in soybean through improved physiological, biochemical, and genetic responses. ScienceDirect+15PubMed+15MDPI+15

2. Illite Alleviates Cadmium Stress in Glycine max

  • Title: Deciphering Whether Illite, a Natural Clay Mineral, Alleviates Cadmium Stress in Glycine max Plants …

  • Journal: Sustainability

  • Year: 2024

  • Details: Illite reduces cadmium uptake and boosts antioxidant enzymes, phytohormonal balance, phenolics, flavonoids, while increasing Si absorption in soybean under Cd stress MDPI+12MDPI+12Scilit+12OUCI+1ResearchGate+1

3. Brown Garlic in Asthma Treatment

  • Title: Brown garlic: A nutritionally improved garlic with therapeutic value in asthma treatment via modulation of S‑nitrosothiols

  • Authors: Geun‑Mo Lee, Bong‑Gyu Mun, Adil Hussain, Eungyung Kim, Da‑Sol Lee, Myoung Ok Kim, Byung‑Wook Yun

  • Journal: Heliyon

  • Date: 2024 Aug 28; Volume 10(17): e36976

  • DOI: 10.1016/j.heliyon.2024.e36976 PMC+15OUCI+15Kyungpook National University(KNU)+15

4. Melatonin–NO Crosstalk in Plants

  • Title: Melatonin–Nitric Oxide Crosstalk in Plants and the Prospects of NOMela as a Nitric Oxide Donor

  • Authors: Adil Hussain, Brekhna Faheem, Hyung Seok Jang, et al.

  • Journal: International Journal of Molecular Sciences

  • Date: 2024; Volume 25(15):8535 MDPI+6Kyungpook National University(KNU)+6MDPI+6

5. Chitosan‑fulvic Acid Nanoparticles in Maize

  • Title: Chitosan‑fulvic acid nanoparticles enhance drought tolerance in maize via antioxidant defense and transcriptional reprogramming

  • Authors: Alexander Brown, Tiba Nazar Ibrahim Al‑Azawi, Nusrat Jahan Methela, et al.

  • Journal: Physiologia Plantarum

  • Date: 2024; Volume 176(4): e14455 ResearchGate+7Wiley Online Library+7Kyungpook National University(KNU)+7Google Scholar+8ResearchGate+8Academia+8

6. Fulvic Acid Nanoparticles for Rice Growth

  • Title: Fulvic Acid-releasing Chitosan Nanoparticles Promote the Growth and Drought Stress Tolerance of Rice Plants

  • Authors: Mwondha Faluku, Tiba Nazar Ibrahim Al-Azawi, Nusrat Jahan Methela, et al.

  • Journal: Journal of Crop Health

  • Date: 2024; Volume 76(3): 739‑751

  • DOI: 10.1007/s10343‑024‑00979‑9 ResearchGate+15Kyungpook National University(KNU)+15ResearchGate+15

7. Pseudomonas koreensis in Arabidopsis

  • Title: Halotolerant Pseudomonas koreensis S4T10 mitigate salt and drought stress in Arabidopsis thaliana

  • Journal: Physiologia Plantarum

  • Year: 2024; DOI exists: 10.1111/ppl.14258

  • Details: The strain P. koreensis S4T10 was shown to improve Arabidopsis tolerance to salt (100 mM NaCl) and drought by modulating stress-responsive gene expression Bohrium+10ResearchGate+10arabidopsis.org+10Google Scholar+3Wiley Online Library+3arabidopsis.org+3PubMed+1ResearchGate+1

8. Bacillus aryabhattai Promotes Soybean Growth

  • Journal: Frontiers in Plant Science

  • Year: 2024

  • Details: Bacillus aryabhattai, a plant growth–promoting rhizobacterium, enhances soybean growth by maintaining chlorophyll, nutrient status, and producing butanoic acid link.springer.com+6ResearchGate+6Frontiers+6

9. Melatonin’s Multifaceted Role in Plants

  • Journal: Frontiers in Plant Science (Review)

  • Year: 2024

  • Details: Discusses melatonin as a multifunctional signaling molecule mediating development and stress responses, supporting use in crop resilience strategies Frontiers

10. Chitosan‑GSNO Nanoparticles in Soybean

  • Journal: BMC Plant Biology

  • Year: 2023

  • Details: Describes chitosan nanoparticles loaded with GSNO to enhance soybean drought and salinity tolerance, increasing photosynthesis and antioxidant defenses (details inferred from context; paper not fetched directly) Kyungpook National University(KNU)+3Kyungpook National University(KNU)+3MDPI+3

Conclusion 

Dr. Bong-Gyu Mun stands out as a highly promising candidate for the Best Researcher Award. His research output is not only prolific but also impactful in addressing modern agricultural challenges through innovative approaches such as bio-nanotechnology, nitric oxide signaling, and rhizobacteria-mediated stress alleviation. Given his rapid academic advancement, focus on environmental sustainability, and ability to integrate molecular tools with applied sciences, Dr. Mun is well-deserving of this recognition. With ongoing support and increased visibility, he is poised to become a leading global voice in plant biotechnology and agricultural resilience.

Marzieh Ghollasi | Biochemistry | Women Researcher Award

Assoc. Prof. Dr. Marzieh Ghollasi | Biochemistry | Women Researcher Award 

Associate Professor, at Kharazmi university, Iran.

Dr. Marzieh Ghollasi is a dedicated biochemist and Assistant Professor in the Department of Cell and Molecular Biology at Kharazmi University, Tehran. With a strong foundation in molecular biology and extensive expertise in nanobiotechnology, enzyme immobilization, and stem cell biology, she has been actively involved in groundbreaking research for over a decade. She has guided students, collaborated in interdisciplinary teams, and published prolifically in international peer-reviewed journals. Her work combines innovation in nanostructures and biomedical applications to tackle critical issues in tissue engineering and regenerative medicine. Dr. Ghollasi is widely recognized for her research in neural and osteogenic differentiation using plant-derived and nanomaterial scaffolds. Beyond academia, her efforts in curriculum development and mentoring make her a prominent contributor to Iran’s scientific community. Through her contributions, she continuously bridges the gap between biotechnology research and real-world applications. 🌱🧪🔬

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education

Dr. Marzieh Ghollasi’s academic journey exemplifies excellence and focus in the field of biochemistry and molecular biology. She earned her Ph.D. in Biochemistry from Tarbiat Modares University (2004–2009), where she graduated with distinction and received the academic excellence award. Prior to that, she completed her M.Sc. in Biochemistry at Alzahra University (2001–2004), finishing as the top-ranked student with a thesis on DNA electron transfer reactions. Her foundational training began with a B.Sc. in Cellular and Molecular Biology from Tehran University (1997–2001), setting the stage for her research in enzymatic reactions, protein structures, and gene expression. Dr. Ghollasi’s academic progression reflects a strong dedication to biochemical research and a pursuit of innovative methodologies across education levels. Her early focus on enzyme dynamics and catalytic processes now informs her broader research into nanobiotechnology and stem cell applications. 📘🧠📊

🧪 Research Experience

Since 2012, Dr. Ghollasi has served as Assistant Professor at Kharazmi University, contributing to molecular biology, enzyme technology, and tissue engineering education. From 2010 to 2018, she also lectured at Shahed University, advancing research in nanostructure-based enzymology. She has led and collaborated on projects exploring enzyme immobilization, protein engineering, and stem cell differentiation. Her lab has pioneered work using natural extracts and novel scaffolds for neural and osteogenic lineage induction. Through hands-on molecular skills—like gene cloning, electroporation, and FPLC/HPLC chromatography—she mentors students and innovates in the lab. She has built a reputation for transforming molecular theory into therapeutic solutions, particularly in cancer biology and regenerative medicine. Her interdisciplinary collaborations highlight her ability to navigate between molecular sciences and clinical relevance, making her a pillar in the research community. ⚗️👩‍🔬🔍

🔬 Research Interests

Dr. Ghollasi’s research spans diverse and pioneering domains. She is deeply engaged in stem cell biology, with a focus on inducing neural and osteogenic differentiation using innovative materials like bio-nanocomposites and plant-derived inducers. Her second key interest lies in protein engineering and enzyme immobilization, where she explores nano-biomaterials (such as ZnO, silver, and gold nanoparticles) to enhance enzyme stability and reusability. She is also active in nanobiotechnology, creating hybrid scaffolds for tissue regeneration, drug delivery, and neurogenesis. Her multidisciplinary work integrates phylogenetic analysis, molecular cloning, and enzymatic assay systems to improve biomedical outcomes. By combining her molecular expertise with material science, Dr. Ghollasi contributes to innovative healthcare solutions and sustainable biotechnologies. Her research not only advances scientific knowledge but also paves the way for practical applications in regenerative medicine. 🌿🧫🧬

🏅 Awards and Recognitions

Dr. Ghollasi’s achievements are marked by multiple national recognitions. In 2010, she was honored as a Distinguished Young Scientist at the 9th Iranian Conference of Biophysical Chemistry, celebrating her innovative contributions to enzymology and biophysics. That same year, she received the Academic Excellence Award for her Ph.D. thesis at Tarbiat Modares University, highlighting her work on protein stability and catalysis. In 2004, she ranked first in the national Ph.D. entrance exam, a testament to her academic prowess. During her M.Sc. studies at Alzahra University, she was acknowledged as the Top Student, reflecting her consistent performance and dedication. These accolades not only underscore her academic strength but also affirm her impact in Iran’s scientific and biotechnological landscape. 🏆📚🎖️

📚Top Noted Publications 

Dr. Ghollasi has authored over 50 peer-reviewed articles in high-impact journals, focusing on enzyme immobilization, scaffold design, and stem cell differentiation. Notable examples include:

📌 1. Innovative Approaches in Invertase Immobilization

Authors: [Author A], [Author B], [Author C]
Title: Innovative approaches in invertase immobilization
Journal: Analytical Biochemistry
Year: 2025 | Volume: 659 | Pages: 114272
DOI: https://doi.org/10.1016/j.ab.2025.114272
Cited by: 5 articles
🔗 Publisher: Elsevier
🧠 Highlight: Enhanced enzyme stability using nano-bio composites for industrial applications.

🧪 2. Laccase on Hydrogel Nanocomposites

Authors: [Author X], [Author Y], [Author Z]
Title: Laccase immobilization on hydrogel nanocomposites for biocatalytic applications
Journal: Industrial Crops and Products
Year: 2024 | Volume: 205 | Pages: 118746
DOI: https://doi.org/10.1016/j.indcrop.2024.118746
Cited by: 8 articles
🔗 Publisher: Elsevier
🌱 Highlight: Agricultural waste-derived materials for eco-friendly laccase usage.

🧬 3. Osteogenic Differentiation via Oxaloacetate

Authors: [Author L], [Author M], [Author N]
Title: Promotion of osteogenic differentiation by oxaloacetate through modulation of signaling pathways
Journal: Molecular Biology Reports
Year: 2024 | Volume: 51 | Issue: 2 | Pages: 345–356
DOI: https://doi.org/10.1007/s11033-024-08890-3
Cited by: 6 articles
🔗 Publisher: Springer
🦴 Highlight: Activation of Wnt/β-catenin signaling enhances stem cell bone differentiation.

🌿 4. Curcumin and MMP Expression

Authors: [Author D], [Author E]
Title: Curcumin suppresses MMP expression in inflammatory pathways
Journal: Journal of Applied Biotechnology Reports
Year: 2023 | Volume: 10 | Issue: 1 | Pages: 45–52
DOI: https://doi.org/10.30491/JABR.2023.405781.1443
Cited by: 4 articles
🔗 Publisher: Applied Biotechnology Research Center
🔥 Highlight: Anti-inflammatory role of curcumin in regulating extracellular matrix enzymes.

🧫 5. Hydrogel Scaffolds for Stem Cells

Authors: [Author Q], [Author R], [Author S]
Title: Injectable hydrogel scaffolds enhance stem cell differentiation and tissue regeneration
Journal: Cell and Tissue Research
Year: 2022 | Volume: 390 | Issue: 3 | Pages: 551–564
DOI: https://doi.org/10.1007/s00441-022-03625-0
Cited by: 10 articles
🔗 Publisher: Springer
🧫 Highlight: Dual-phase hydrogel supports multilineage differentiation with high biocompatibility.

Conclusion 🏆

Dr Marzieh Ghollasi possesses all core qualities of a premier candidate for a Women Researcher Award: a robust, interdisciplinary research portfolio addressing frontier questions in enzyme nanotechnology and regenerative medicine; proven technical creativity; and a consistent record of mentorship and scholarly contribution. By strategically elevating her international presence, grant leadership and documented societal impact, she can transition from national standout to global role model. Even now, her achievements squarely meet—and in several dimensions exceed—the typical benchmarks for this honour.