Assoc. Prof. Dr. Aboubakr H. Abdelmonsef | Drug Design | Best Researcher Award
Associate Professor, at South Valley University- Faculty of Science, Egypt.Â
Dr. Aboubakr Haredi Abdelmonsef is an Associate Professor specializing in Organic Chemistry, Bioinformatics, and Drug Design at South Valley University, Egypt. With a strong foundation in organic chemistry and computational biology, he has established himself as a prominent figure in medicinal chemistry. Dr. Abdelmonsef’s research focuses on synthesizing biologically active molecules, analyzing their structural properties, and developing computational models to facilitate drug discovery. Over the years, he has contributed to various research projects, published extensively in peer-reviewed journals, and presented at numerous international conferences. His dedication to advancing science is reflected in his impressive publication record and the impact of his work, as highlighted by his h-index of 17 on Scopus. Dr. Abdelmonsef is known for his interdisciplinary approach, integrating organic synthesis and bioinformatics to address pressing health challenges.
Profile
Education đ
Dr. Abdelmonsef received his Ph.D. in Chemistry from Osmania University, India, where he specialized in organic chemistry and computational studies for drug discovery. He also attended Jacobs University Bremen, Germany, as a visiting Ph.D. student, where he enhanced his expertise in computational chemistry. His doctoral work, which combined experimental synthesis with computational approaches, laid the foundation for his later contributions in bioinformatics and drug design. Dr. Abdelmonsef began his academic journey with a solid background in chemistry, progressively expanding his expertise into bioinformatics. This diverse educational background has enabled him to bridge gaps between organic synthesis and computational biology, making him a valuable asset in interdisciplinary research within his field.
Experience đź
Dr. Abdelmonsef is an Associate Professor at South Valley Universityâs Chemistry Department, where he has taught and conducted research since 2006. His academic journey includes roles as an Assistant Professor, Assistant Lecturer, and Teaching Assistant. He also gained international experience as a visiting Ph.D. student at Jacobs University in Germany, enhancing his skills in computational modeling. His research career began with roles focusing on organic synthesis, gradually evolving to include bioinformatics and computational drug design. Throughout his career, he has supervised students, led workshops, and published extensively, making significant contributions to medicinal chemistry and bioinformatics. His multifaceted experience reflects his dedication to both academia and practical applications in chemical research.
Research Interests đŹ
Dr. Abdelmonsef’s research interests lie at the intersection of organic chemistry, bioinformatics, and drug design. He is particularly focused on developing and synthesizing novel bioactive molecules and using computational tools to understand their interactions with biological targets. His work includes molecular docking, QSAR studies, and in silico screening, aiming to accelerate drug discovery and address challenges in antimicrobial and anticancer therapy. Additionally, he explores the structural properties of heterocyclic compounds and their potential as therapeutic agents. Dr. Abdelmonsef’s interdisciplinary approach combines traditional synthesis with advanced computational techniques, allowing him to contribute valuable insights into bioactive molecule design and the potential development of new pharmaceuticals.
Awards đ
Dr. Abdelmonsef has received several accolades for his contributions to chemistry, including recognition for his research on bioactive molecules and computational drug design. His work has garnered both national and international attention, emphasizing his commitment to advancing medicinal chemistry. His achievements include awards from prominent conferences and academic institutions, underscoring his reputation in the scientific community. Dr. Abdelmonsefâs h-index of 17 is a testament to the impact of his research, and his contributions continue to influence the field of organic and medicinal chemistry. His recognition highlights his dedication to innovation in chemical research and his commitment to advancing drug discovery.
Publications đ
Dr. Abdelmonsef has an extensive list of publications, contributing to the fields of organic chemistry and drug design. His works include:
- Synthesis, spectroscopic characterization, antimicrobial activity, and computational studies of five and/or six heterocyclic nitrogen rings linked to thienopyrazole moiety” – Journal of Molecular Structure (2024)
This study explores the synthesis and structural analysis of heterocyclic compounds containing nitrogen rings connected to a thienopyrazole core. The research emphasizes antimicrobial activity assessment against various bacterial strains, with computational studies supporting the understanding of the binding interactions of these compounds with microbial proteins. The article has been widely cited for its methodology and results in medicinal chemistry research. - “Novel Pyrazole-Linked Pyran Hybrids: Synthesis, Anti-inflammatory Evaluation, Molecular Docking Studies” – Egyptian Journal of Chemistry (2024)
This paper reports on the synthesis of pyrazole-pyran hybrid compounds, which were tested for anti-inflammatory properties. Molecular docking studies are also included, showing potential receptor interactions that may contribute to the anti-inflammatory effects observed. This research has been referenced broadly for its innovative approach to hybrid compound synthesis and its potential implications in anti-inflammatory drug development. - “New 1,3-Diphenyl-1H-pyrazol-5-ols as Anti-Methicillin Resistant Staphylococcus aureus Agents” – Heliyon (2024)
Focused on combating Methicillin-resistant Staphylococcus aureus (MRSA), this study presents novel pyrazol-5-ols with potential antibacterial activity. The research is significant due to the pressing need for effective MRSA treatments, and the synthesized compounds exhibited promising activity. The paper contributes to the field by offering new compounds that could address antibiotic resistance. - “Synthesis, Characterization, Computer-aided Docking Studies, and Antifungal Activity of Two-armed Quinazolin-2,4-dione Derivatives” – Journal of Molecular Structure (2024)
This work investigates quinazolin-2,4-dione derivatives for their antifungal properties. The study includes computational docking to predict interactions with fungal targets, assisting in understanding how these compounds might exert antifungal effects. The results have implications for the development of new antifungal agents. - “New Quinazolin-2,4-dione Derivatives Incorporating Acylthiourea, Pyrazole and/or Oxazole Moieties as Antibacterial Agents” – RSC Advances (2024)
This study details the synthesis of quinazolin-2,4-dione derivatives modified with acylthiourea, pyrazole, or oxazole moieties. The derivatives were evaluated for antibacterial efficacy, and the findings suggest they are potent agents against various bacterial strains. This paper is valuable in antibacterial research, especially for its exploration of structural modifications to enhance bioactivity.
Conclusion
Dr. Abdelmonsefâs achievements in organic chemistry, bioinformatics, and drug design position him as a strong candidate for the Best Researcher Award. His publication history, citation impact, and international collaborations are significant strengths, while further diversification in research topics and methodologies could enhance his candidacy further. Overall, he demonstrates considerable expertise and dedication, making him a worthy nominee for this prestigious award.