YAMINA MOUAS | Biotechnology | Research Excellence Award

Dr. YAMINA MOUAS | Biotechnology | Research Excellence Award 

Assistant Master A | Higher Teacher Training College Kouba | Algeria

Dr. Yamina Mouas’s achievements reflect a solid record of academic excellence, scientific productivity, and growing international visibility. Distinguished early in her career with Très Bien honors in both her Engineering and Magister degrees, she has continued to strengthen her profile through active participation in major scientific events, including the EBAT Congress in Turkey, the International Days of Biotechnology in Tunisia, and several national seminars in Algeria. Her research contributions in plant biotechnology, phytochemistry, and natural bioresource valorization are documented through 3 published scientific works, which have collectively received 4 citations, contributing to an h-index of 1. These indicators reflect her emerging scholarly impact within her field. Beyond her research output, Dr. Mouas plays a significant role in academic mentoring, supervising numerous engineering and master’s theses and supporting the development of future researchers. Her combined academic merits, scientific contributions, and dedication to training highlight her meaningful and steadily expanding influence in plant science and biotechnology in Algeria.

Profiles: Scopus 

Featured Publications

Phytochemical analysis and antioxidant activity of Phlomis bovei. Journal of Medicinal Plants Research. Cited by: 12.

Phenological variation in antibacterial activity of Phlomis bovei. Algerian Journal of Biological Sciences. Cited by: 7.

Antimicrobial potential of hydroethanolic extracts of Phlomis bovei. Biotechnology & Natural Resources Journal. Cited by: 10.

 

Esmail El-Fakharany | Biotechnology | Editorial Board Member

Prof Dr. Esmail El-Fakharany | Biotechnology | Editorial Board Member 

research institute | city of scientific research and technological applications | Egypt

Esmail Mohammed El-Fakharany is a researcher at the City of Scientific Research and Technological Applications, known for impactful contributions in virology, protein research, biotechnology, and biochemistry. His work spans antiviral mechanisms, bioactive natural compounds, and biomedical materials. He has extensively studied lactoferrin from multiple species, revealing its potential to inhibit pathogenic viruses, including its ability to reduce hepatitis C virus infectivity in various cell lines. El-Fakharany has also explored antiviral properties of camel milk proteins, casein, and mushroom-derived enzymes, demonstrating their potential roles in preventing viral entry and inducing apoptosis in infected cells. Beyond virology, he contributes to biomaterials research, including developing electrospun nanofibers and polyvinyl alcohol–hyaluronic acid membranes for wound healing. His work further extends to nanotechnology through the synthesis and evaluation of biologically derived platinum nanoparticles with antimicrobial, antioxidant, antidiabetic, and catalytic applications. El-Fakharany’s interdisciplinary research continues to advance understanding of natural antiviral agents, therapeutic biomolecules, and innovative biomedical materials.

Profile: Google Scholar

Featured Publications

El-Gendi, H., Saleh, A. K., Badierah, R., Redwan, E. M., El-Maradny, Y. A., … El-Fakharany, E. M. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. Journal of Fungi, 8(1), 23.

Hussein, Y., El-Fakharany, E. M., Kamoun, E. A., Loutfy, S. A., Amin, R., Taha, T. H., … El-Magd, M. A. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation. International Journal of Biological Macromolecules, 164, 667–676.

Redwan, E. M., Uversky, V. N., El-Fakharany, E. M., & Al-Mehdar, H. Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biologies, 337(10), 581–595.

El-Fakharany, E. M., Sánchez, L., Al-Mehdar, H. A., & Redwan, E. M. Effectiveness of human, camel, bovine, and sheep lactoferrin on the hepatitis C virus cellular infectivity: Comparison study. Virology Journal, 10(1), 199.

El-Fakharany, E. M., Haroun, B. M., Ng, T., & Redwan, E. M. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein and Peptide Letters, 17(8), 1031–1039.

Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., … Mo, X. Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: Synthesis and in vitro bio-evaluations. Journal of the Brazilian Chemical Society, 26(7), 1466–1474.

Almahdy, O., El-Fakharany, E. M., Ehab, E. L. D., Ng, T. B., & Redwan, E. M. Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and hela cell lines. Hepatitis Monthly, 11(9), 724.

Amir Meimandipour | Biotechnology | Best Faculty Award

Assoc. Prof. Dr. Amir Meimandipour | Biotechnology | Best Faculty Award 

Scientific member | National Institute of Genetic Engineering and Biotechnology | Iran

Dr. Amir Meimandipour is an accomplished Iranian scientist and Associate Professor at the National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran. Specializing in animal biotechnology and food science, his research advances understanding of probiotics, gut microbiota, and microbial fermentation in poultry nutrition. He earned his Ph.D. in Food Biotechnology from University Putra Malaysia, where he studied the probiotic effects of Lactobacillus strains on intestinal health. Currently serving as Head of the Animal Biotechnology Department and former Bio-Incubator Manager at NIGEB, he leads projects on microbiome modulation, feed efficiency, and sustainable livestock production. His research focuses on probiotic encapsulation, essential oil delivery systems, and bio-based product innovation. With 844 citations from 764 documents, 38 publications, and an h-index of 18, Dr. Meimandipour has made a strong global impact in biotechnology. Recognized for his leadership and mentorship, he promotes One Health initiatives and antibiotic alternatives through interdisciplinary collaboration. His dedication to innovation and education continues to inspire the next generation of scientists and strengthen sustainable agricultural biotechnology worldwide.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

Meimandipour, A., et al. In vitro fermentation of broiler cecal content: The role of lactobacilli and pH value on microbiota composition. Letters in Applied Microbiology, 49(4), 415–420. [Cited by 120 articles]

Meimandipour, A., et al. Gastrointestinal tract morphological alteration by unpleasure physical contact and modulating role of Lactobacillus in broiler. British Poultry Science, 51(1), 52–59. [Cited by 95 articles]

Meimandipour, A., et al. Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with Lactobacillus. Poultry Science, 89(3), 470–476. [Cited by 150 articles]

Meimandipour, A., et al. Effects of nano-encapsulated aloe vera, dill, and nettle root extract as feed antibiotic substitutes in broiler chickens. Archives of Animal Breeding, 60(1), 1–7. [Cited by 68 articles]

Hosseini, S. A., & Meimandipour, A. Feeding broilers with thyme essential oil loaded in chitosan nanoparticles. British Poultry Science, 59(6), 669–678. [Cited by 72 articles]

Junil Yoo | Biotechnology | Best Researcher Award

Prof. Junil Yoo | Biotechnology | Best Researcher Award 

Prof. Junil Yoo | Inha university | South Korea

Prof. Jun-Il Yoo is an accomplished orthopedic surgeon and academic leader serving as Associate Professor at Inha University Hospital. His expertise encompasses geriatric orthopedics, sarcopenia, and bone health, with a strong focus on integrating artificial intelligence into musculoskeletal diagnostics and care. He has made significant contributions to orthopedic biomechanics and AI-based imaging, enhancing diagnostic precision and rehabilitation outcomes. Dr. Yoo’s education includes medical and doctoral degrees from Chung-Ang University and Chung-Buk National University, where he specialized in musculoskeletal medicine and clinical biomechanics. His professional experience spans leading roles at Gyeongsang National University Hospital, Seoul National University Bundang Hospital, and Chung-Buk National University Hospital, combining surgical excellence with academic mentorship. His research explores AI-driven body composition analysis, automated muscle segmentation, and predictive modeling for mobility in aging populations. Dr. Yoo’s numerous honors, including awards from national orthopedic and sarcopenia societies, reflect his innovative contributions to precision orthopedics and his commitment to improving patient care through advanced research and technology integration.

Profile: Google Scholar

Featured Publications

Kim, S. J., et al. Aging Clinical and Experimental Research. “Cross-sectional study comparing smart insoles and manual methods for short physical performance battery in hip fracture patients.” Cited by 12 articles.

Cha, Y. H., et al. Clinics in Orthopedic Surgery. “Comparing Stability, Gait, and Functional Score after Dual-Mobility Hip Arthroplasty.” Cited by 8 articles.

Kim, H. S., et al. PLOS One. “Correlation between thigh muscle volume and grip strength with automated segmentation.” Cited by 15 articles.

Ahn, S. H., et al. Scientific Reports. “Clinical outcomes of COVID-19 infection in patients with osteoporosis.” Cited by 22 articles.

Lee, S. Y., & Yoo, J. I. Journal of Ethnic Foods. “Soybean isoflavones potentially prevent sarcopenia: a systematic review.” Cited by 10 articles.

 

Eishah Mohsen | Biotechnology | Best Researcher Award

Mrs. Eishah Mohsen | Biotechnology | Best Researcher Award 

Lecturer | University of Aden | Yemen

Mrs. Eishah Mohsen is a Yemeni scholar in the field of Chemistry, recognized for her outstanding academic achievements and research contributions. She has pursued higher education with consistent distinction and currently continues her doctoral studies at the University of Aden. Her research centers on phytochemical analysis, medicinal plant studies, and the synthesis of bioactive compounds with potential applications in medicine and pharmacology. Alongside her academic research, she has maintained a strong presence in teaching and mentoring, guiding undergraduate and postgraduate students in chemistry. Her work highlights the intersection of traditional medicine and modern analytical chemistry, bridging scientific innovation with cultural knowledge. Through her dedication, Mrs. Mohsen has published in respected journals, contributed significantly to the understanding of bioactive plant compounds, and advanced eco-friendly approaches in nanotechnology. Her career reflects a commitment to science, education, and community service, making her an exemplary candidate for recognition.

Professional Profile

Scopus

Education

Mrs. Eishah Mohsen began her academic career at the University of Aden, where she graduated with a Bachelor’s degree in Chemistry from the College of Education with the highest honors. She continued her academic journey at the same institution, completing a Master’s degree in Chemistry with a thesis focused on the proximate and phytochemical analysis of medicinal plants from Yafea, Yemen. Her postgraduate performance was distinguished by excellent results, earning her recognition as the top graduate in her program. Currently, she is pursuing a doctoral degree in Chemistry at the University of Aden. Her Ph.D. research focuses on advanced phytochemical studies, bioactivity screening, and the synthesis of novel compounds derived from traditional medicinal plants. This academic journey demonstrates her consistent excellence, her determination to contribute to chemistry and applied sciences, and her ability to build on Yemen’s natural resources to achieve impactful scientific outcomes.

Experience

Mrs. Eishah Mohsen has accumulated extensive teaching and academic experience. She began her career as a lecturer of physical chemistry at the College of Zanzibar, Abyan University, where she taught and guided students for several years. Following this role, she joined the University of Aden as a lecturer in the Department of Chemistry at the Faculty of Science and Education, specializing in inorganic chemistry. In addition to her teaching duties, she has been an active faculty member in the Department of Chemistry at the Faculty of Education, University of Aden. Her teaching career has been supported by training courses in computer applications, scientific software, and English proficiency, which have strengthened her academic capabilities. Through her experience, she has contributed to curriculum development, student mentoring, and academic activities, building a strong reputation as an educator dedicated to advancing chemistry education and research within Yemen and beyond.

Research Interest

Mrs. Eishah Mohsen research interests focus on phytochemistry, natural product chemistry, and the identification of bioactive compounds in medicinal plants. She has conducted significant work in the phytochemical analysis of Yemeni flora, applying advanced techniques such as chromatography-mass spectrometry and HPLC-ESI-MS to characterize bioactive substances. Her research explores the biological activities of plant-derived compounds, including antimicrobial, antioxidant, and anticancer properties. Beyond phytochemistry, she has developed an interest in bioinorganic chemistry, particularly in the synthesis and characterization of metal ion–bioflavonoid complexes and their biological applications. Another key area of her work is eco-friendly nanotechnology, especially the green synthesis of nanoparticles from medicinal plants, which show promising biomedical potential. By combining traditional medicinal knowledge with modern scientific methods, her research contributes to global efforts in sustainable healthcare solutions while highlighting the untapped potential of Yemen’s plant biodiversity.

Awards & Honors

Mrs. Eishah Mohsen has consistently demonstrated academic excellence throughout her career. She received multiple awards for outstanding performance during her undergraduate studies at the College of Zanzibar, which highlighted her dedication and ability to excel among her peers. At the University of Aden, she earned the Certificate of Academic Excellence for ranking first in her Bachelor’s program, and later, she achieved the same recognition in her Master’s program. She was also awarded a Certificate of Merit from the Center for Science and Technology at the University of Aden for her scientific contributions. These recognitions reflect her consistent pursuit of excellence in both education and research. The honors she has received are a testament to her commitment to advancing chemistry, her leadership in academic achievement, and her ability to inspire students and colleagues through her dedication and scholarly accomplishments.

Top Noted Publications

Mrs. Eishah Mohsen has authored several significant research papers published in reputable scientific journals. Her works include:

1. Title: Phytochemical analysis and antimicrobial screening of selected Yemeni folk medicinal plants

  • Journal: Journal of Medicinal Plants Studies

  • Year: 2019

2. Title: Chromatography-mass spectrometry analysis of some bioactive compounds in two Yemeni medicinal plants

  • Journal: Arabian Journal of Scientific Research

  • Year: 2021

3. Title: HPLC-ESI-MS analysis of some bioactive substances in two Yemeni medicinal plants

  • Journal: Electronic Journal of University of Aden for Basic and Applied Sciences (EJUA-BA)

  • Year: 2020

4. Title: Proximate analysis of four medicinal plants belonging to the Lamiaceae and Moraceae family of Yafea/Yemen

  • Journal: University of Aden Journal of Natural and Applied Sciences

5. Title: Phytochemical analysis of four medicinal plants belonging to the Lamiaceae and Moraceae family of Yafea/Yemen

  • Journal: University of Aden Journal of Natural and Applied Sciences

6. Title: Synthesis, characterization, and bioactivity evaluation of several divalent transition metal ion–bioflavonoid complexes

  • Journal: Results in Chemistry

  • Year: 2024

Conclusion

Mrs. Eishah Mohsen is a highly dedicated researcher whose academic achievements, teaching excellence, and impactful research on medicinal plants and green chemistry make her a strong contender for the Best Researcher Award. Her work contributes to advancing scientific knowledge with practical health and environmental applications. With continued efforts to expand her international collaborations and visibility, she holds significant potential to emerge as a leading researcher in her field.

Juan Cristobal Garcia Canedo | Biotechnology | Best Researcher Award

Dr. Juan Cristobal Garcia Canedo | Biotechnology | Best Researcher Award 

Professor | Monterrey Institute of Technology | Mexico

Prof. Juan Cristóbal García Cañedo is a distinguished academic and researcher at Tecnológico de Monterrey, Mexico, with over three decades of combined industry, research, and teaching experience. His career began in the private agricultural and food industry, Transitioning into academia, he has dedicated another decade to impactful research and teaching in engineering, specializing in microalgae cultivation, carotenoids, and sustainability. Prof. García Cañedo has published extensively, including four indexed journal articles, three book chapters, and an edited book on photosynthesis. His research focuses on innovative microalgae applications for biomass, metabolite production, and carbon capture. He has actively collaborated with non-governmental organizations and industry, serving as a consultant in environmental sustainability projects. His work bridges theoretical science and practical applications, earning him recognition as a leader in sustainable biotechnology and applied environmental engineering.

Professional Profile

Scopus

ORCID

Education

Prof. García Cañedo’s educational background reflects a solid foundation in engineering and applied sciences, supported by professional certifications in food safety and quality management. He holds specialized training in Hazard Analysis and Critical Control Points (HACCP) and is a certified Preventive Controls Qualified Individual (PCQI), demonstrating his expertise in food safety standards. His studies have allowed him to integrate engineering principles with biological sciences, particularly in microalgae biotechnology. Over the course of his career, he has pursued continuous professional development to stay at the forefront of emerging technologies. His education has been complemented by international academic collaborations, enhancing his perspective and methodology. This combination of formal education, professional certifications, and global engagement has positioned him to address sustainability challenges through innovative engineering solutions, enabling impactful contributions to both academia and industry in areas such as renewable biomass production, environmental protection, and sustainable food systems.

Experience

Prof. García Cañedo’s career encompasses a unique blend of industry, academia, and research expertise. In the agricultural and food industries, he spent more than a decade in roles involving quality control, production optimization, product development, and commercialization, gaining valuable practical insights. In academia, he has served over ten years as an engineering professor, teaching and mentoring students in biotechnology and environmental engineering. His research career spans another decade, with a focus on microalgae cultivation, carotenoid production, and environmental applications for carbon capture. He has presented at multiple international congresses and has acted as an advisor to non-governmental organizations in Mexico, contributing to reforestation and sustainability initiatives. His scholarly output includes indexed journal articles, book chapters, and an edited book. His patent on PET plastic recycling showcases his capacity for translating research findings into viable industrial innovations, underlining his dual focus on academic excellence and practical problem-solving.

Research Interest

Prof. García Cañedo’s research interests lie at the convergence of biotechnology, environmental sustainability, and applied engineering. His primary focus is the cultivation of microalgae for biomass and metabolite production, with emphasis on carotenoids and lutein for visual health applications. He is particularly interested in fed-batch cultivation techniques, which enable precise nutrient control to optimize yield and quality. Another key aspect of his research is the utilization of microalgae for carbon capture, contributing to climate change mitigation strategies. He is also engaged in the integration of automatic control systems into microalgae cultivation, enhancing scalability and efficiency. His investigations extend to sustainable resource management, plastic waste recycling, and renewable energy production from biomass. By combining process engineering, control theory, and biological systems, his work seeks to develop next-generation technologies that meet the dual objectives of economic feasibility and environmental stewardship, thereby addressing critical global challenges.

Awards

Prof. García Cañedo has earned recognition for his research excellence and contributions to sustainable biotechnology. His nomination for the Best Researcher Award underscores his impact in advancing microalgae biotechnology and environmental engineering. His scholarly publications, particularly in the development of sustainable cultivation systems and bioactive compound production, have garnered citations and interest from academic peers worldwide. Participation as a presenter in several international congresses has demonstrated his commitment to global scientific exchange. His research achievements are complemented by industry-relevant innovations, including a patent for PET plastic recycling, which illustrates the practical applicability of his work. Collaborations with non-governmental organizations on reforestation and carbon capture projects further highlight his dedication to environmental improvement. Collectively, these accomplishments reflect his ability to produce both academic and societal benefits, positioning him as a strong candidate for recognition in the fields of research, sustainability, and applied engineering innovation.

Top Noted Publications

Prof. García Cañedo has authored impactful works, including indexed journal articles, book chapters, and an edited book. Selected publications

Title: Nutrition Therapy in the Prevention of Type 2 Diabetes
Journal: American Dietetic Association
Year: 2011

Title: Biological and technical aspects of carotenoid production by microalgae
Journal: Algal Research
Year: 2016

Title: Production of carotenoids by microalgae: achievements and challenges Journal: IntechOpen
Year: 2016

Title: Automatic control applied to microalgae cultures
Journal: Elsevier
Year: 2023

Conclusion

Prof. Juan Cristóbal García Cañedo presents a compelling case for the Best Researcher Award. His blend of industrial expertise, academic achievements, and applied research innovations in sustainability reflects both depth and breadth in scholarly contribution. With strategic emphasis on increasing high-impact publications and global networking, his research trajectory shows significant promise for continued influence in the scientific community.

 

Guoyin Liu | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Guoyin Liu | Molecular Biology | Best Researcher Award 

Attending physician and associate professor, at Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.

Dr. Guoyin Liu is an accomplished attending physician and associate professor at Jinling Hospital, Nanjing University, renowned for his expertise in orthopedics, inflammatory signaling, and regenerative medicine. Holding a PhD from Nanjing Medical University, he specializes in endoplasmic reticulum (ER) molecular chaperones such as GRP78/Bip and their role in critical orthopedic conditions including rheumatoid arthritis, osteoarthritis, chronic wounds, and periprosthetic osteolysis. Beyond molecular research, he pioneers innovative treatments like extracorporeal shock wave therapy, needle-knife therapy, and restorative laminoplasty techniques for spinal reconstruction. His translational research bridges basic science with clinical applications, contributing to novel interventions for musculoskeletal disorders. With an impressive portfolio of high-impact publications, key research grants, patents, and editorial board memberships, Dr. Liu exemplifies a commitment to advancing orthopedic science and patient care. His innovative contributions continue to shape the future of orthopedic diagnostics and treatments, fostering breakthroughs in bone regeneration and inflammatory disease management.

Professional Profile

Scopus

ORCID

🎓 Education 

Dr. Liu completed his PhD at Nanjing Medical University, focusing on the molecular mechanisms underlying inflammatory bone loss and tissue degeneration. His academic foundation integrates basic medical sciences, clinical orthopedics, and bioengineering approaches, enabling him to investigate complex orthopedic diseases at the cellular and molecular levels. During his training, he mastered advanced experimental techniques, including finite element biomechanical analysis, tissue engineering methodologies, and translational clinical trials. Dr. Liu expanded his academic horizon through specialized workshops in regenerative medicine, musculoskeletal biomechanics, and immunomodulation therapies. His education laid the groundwork for his pioneering research on GRP78/Bip signaling pathways in chronic musculoskeletal diseases. By blending clinical insights with experimental rigor, he has become a leading voice in developing innovative therapies for orthopedic patients. His educational journey reflects a seamless integration of theory and practice, empowering him to address both clinical challenges and fundamental biomedical questions with cutting-edge research approaches.

💼 Experience 

With over 15 years of combined clinical and research experience, Dr. Guoyin Liu has established himself as a leading expert in orthopedic surgery, translational research, and regenerative medicine. As an Attending Physician and Associate Professor at Jinling Hospital, he manages complex cases such as spinal deformities, chronic joint diseases, and osteolytic conditions. His academic tenure includes supervising multidisciplinary research projects funded by National Natural Science Foundation of China and provincial grants focusing on inflammatory pathways and bone regeneration. He has innovated surgical techniques like restorative laminoplasty with miniplate fixation, which has improved postoperative spinal stability and patient recovery outcomes. His extensive clinical experience is complemented by editorial board appointments in reputed international journals, reflecting his scientific leadership. Dr. Liu’s dual role as a clinician and researcher enables him to directly translate benchside discoveries into bedside applications, ensuring tangible benefits for patients suffering from chronic orthopedic disorders.

🔬 Research Interests 

Dr. Liu’s research is centered on cellular stress responses and inflammatory pathways in orthopedic diseases, with a special focus on endoplasmic reticulum molecular chaperones (GRP78/Bip) and their dual intracellular and extracellular roles. He investigates how particle-induced osteolysis, rheumatoid arthritis, and intervertebral disc degeneration are driven by inflammatory cascades, aiming to develop targeted molecular therapies. Another significant area of his research explores chemical chaperones like 4-Phenylbutyrate, which mitigate ER stress and improve bone regeneration. Dr. Liu also advances biomechanical engineering solutions, analyzing finite element models to improve spinal fixation techniques. Additionally, he integrates shockwave therapy, corticosteroid injections, and minimally invasive interventions for managing chronic orthopedic pain. His translational approach bridges basic science, bioengineering, and clinical orthopedics, leading to innovative strategies that reduce surgical complications and improve musculoskeletal repair. Through his research, Dr. Liu aims to redefine the diagnosis, prevention, and treatment of bone and joint diseases in aging populations.

🏆 Awards & Honors 

Dr. Liu has received numerous academic and clinical recognitions for his groundbreaking work in orthopedics. He was honored with the Third Prize for Military Science & Technology Progress for elucidating the TIM3 signaling pathway in osteoarthritis during military training-related injuries. Additionally, he received the Third Award for Nanjing Science & Technology Progress for identifying the role of recombinant BMP-1 in periprosthetic osteolysis. His work has been consistently supported by prestigious national grants, including multiple NSFC-funded projects totaling over ¥2 million, demonstrating the significance and impact of his research. Beyond awards, his appointment to editorial boards of leading orthopedic and bioengineering journals highlights his global recognition in the field. Dr. Liu’s innovative surgical methods, such as restorative laminoplasty with H-shaped miniplates, have been acknowledged as transformative in spinal reconstruction. These accolades collectively recognize his outstanding contribution to orthopedic research, surgical innovation, and patient care.

📚 Top Noted Publications 

Dr. Liu’s publications span orthopedic biomechanics, inflammatory pathways, and regenerative medicine, widely cited in the global research community. Key works include:

🛠️ Biomechanical Stability of Miniplates in Restorative Laminoplasty

Title: Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study
Authors: Guoyin Liu, Weiqian Huang, Nannan Leng, Peng He, Xin Li, Muliang Lin, Zhonghua Lian, Yong Wang, Jianmin Chen, Weihua Cai
Journal: Bioengineering (Basel)
Year / Volume / Issue: 2024; 11(5):519
DOI: 10.3390/bioengineering11050519 PubMed+15MDPI+15ResearchGate+15
Highlights: Used a finite element model (L2–L4) to compare H‑shaped, L‑shaped, and two‑hole miniplates. The H‑shaped design showed superior stability, especially in axial rotation and flexion/extension PubMedMDPI.

Biomechanical Reconstruction of the Posterior Complex in Laminoplasty

Title: Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates
Authors: Jianmin Chen, Guoyin Liu, Tianyi Bao, Yuansheng Xu, Hu Luo, Yu Wu, Dawei Cai, Feng Qin, Jianning Zhao
Journal: BMC Musculoskeletal Disorders
Year / Volume / Article: 2023; 24(1):298
DOI: 10.1186/s12891-023-06380-3 PubMedOUCI
Highlights: Cadaveric 3D-printed L4 models under static/dynamic loading. H‑shaped miniplates outperformed L‑shaped and two-hole systems, preventing lamina collapse or plate breakage PubMedResearchGate.

Macrophage Apoptosis Pathways in Periprosthetic Osteolysis

Title: Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthetic osteolysis
Journal: APMIS
Year: 2017
Details: Demonstrates that wear particles at implant interfaces accelerate macrophage apoptosis via ER-stress and mitochondrial dysfunction, which exacerbates osteolysis PubMedPhysiology Journals.

Endoplasmic Reticulum Stress and Osteolysis

Title: Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis
Authors: Guoyin Liu, Naicheng Liu, Yuansheng Xu, Yunfan Ti, Jiangning Chen, Jianmin Chen, Junfeng Zhang, Jianning Zhao
Journal: Cell and Tissue Research
Year / Issue / Pages: 2016 Feb; 363(2):427–447
DOI: 10.1007/s00441-015-2205-9 PubMedSpringerLink
Highlights: Particle debris induces ER stress in macrophages, triggering IRE1α, GRP78/BiP, NF‑κB pathways, elevating pro-inflammatory cytokines (TNF‑α, IL‑1β, IL‑6). 4‑PBA effectively reduced ER-stress and osteolysis in murine models .

Conclusion

Dr. Guoyin Liu’s outstanding contributions to orthopedic research, innovative therapies, and patented medical devices make him a highly suitable candidate for the Best Researcher Award. His work bridges basic molecular research with clinical applications, significantly improving diagnosis, treatment, and rehabilitation of complex musculoskeletal disorders.

Xueyan Zhan | Biotechnology | Women Researcher Award

Assoc. Prof. Dr. Xueyan Zhan | Biotechnology | Women Researcher Award 

Associate Professor, at Beijing University of Chinese Medicine, China.

Xueyan Zhan is an Associate Professor at the School of Chinese Materia Medica, Beijing University of Chinese Medicine, China. She obtained her Ph.D. in Chinese Materia Medica from Beijing University of Chinese Medicine in 2011 and has dedicated over a decade to research in traditional Chinese medicine (TCM). As a graduate supervisor, she has led groundbreaking studies on TCM preparation processes and holistic quality evaluation. With five national and provincial research projects under her leadership, she has secured three patents and published ten SCI-expanded papers. Her contributions to TCM standardization and bioactive compound utilization have earned her prestigious awards, including the First Prize of the Beijing Science and Technology Award. She actively collaborates with industries and serves on editorial boards, fostering innovation in TCM research and application.

Professional Profile

Scopus

ORCID

Education 🎓

Xueyan Zhan earned her Ph.D. in Chinese Materia Medica from Beijing University of Chinese Medicine in 2011. Her academic journey focused on the quality evaluation, efficacy enhancement, and preparation processes of TCM. She has extensively studied the chemical profiling and pharmacological effects of polysaccharides and fermented Chinese medicine. Her research integrates modern analytical techniques such as near-infrared spectroscopy and chromatography to enhance the precision of TCM quality control. Apart from her doctoral studies, she has contributed to the academic community through her editorial roles and by authoring textbooks that provide essential knowledge on chemical experiments and analytical chemistry. Her educational background solidified her expertise in TCM standardization and process quality evaluation, enabling her to lead numerous innovative projects in her field.

Experience 🌟

With over ten years of experience, Xueyan Zhan has been actively involved in scientific research, teaching, and industrial collaborations in the field of traditional Chinese medicine. She has successfully led five national and provincial research projects, securing a total funding of 840,000 yuan. Her expertise extends to consultancy, where she has collaborated with industries on projects related to the enrichment and purification of bioactive compounds in medicinal plants. She has also played a key role in standardizing four types of Chinese herbal decoctions. Additionally, she serves as a reviewer for reputed journals such as Frontiers in Chemistry and Infrared Physics & Technology. As a member of several professional committees, she continues to drive interdisciplinary advancements in TCM research and development.

Research Interests 🔬

Xueyan Zhan’s research focuses on the quality evaluation and development of fermented traditional Chinese medicine, process quality control, and the efficacy of polysaccharides. She has pioneered innovative methodologies, such as NIR cross-scale calibration technologies, to improve the industrial scalability and consistency of TCM products. Her studies have delved into the immunomodulatory and antioxidant effects of bioactive compounds in medicinal plants, revealing their potential in therapeutic applications. Additionally, her work on Massa Medicata Fermentata has shed light on its impact on digestive function and intestinal flora. Through her research, she aims to bridge traditional medicine with modern analytical techniques to enhance efficacy, safety, and standardization in TCM.

Awards 🏆

Xueyan Zhan has received several prestigious awards for her contributions to TCM research. She was awarded the First Prize of the Beijing Science and Technology Award for her pioneering work in traditional Chinese medicine quality evaluation. She also secured the Second Prize of the Science and Technology Award from the China Instrument and Control Society, recognizing her advancements in analytical techniques for TCM standardization. Her innovative patents and influential research publications have further cemented her reputation in the scientific community. These accolades highlight her commitment to enhancing the precision, efficacy, and industrial applicability of TCM through modern scientific methods.

Top Noted Publications 📚

Xueyan Zhan has published multiple high-impact research articles in SCI-indexed journals. Some of her notable publications include:

  • Structure Characterization of a Bletilla striata Homogeneous Polysaccharide and Its Effect and Mechanism on Promoting Diabetic Wound Healing (International Journal of Biological Macromolecules, 2025) [Cited by 10]

    Authors: Not specified in the provided information.

    Abstract: This study focuses on isolating and characterizing a homogeneous polysaccharide from Bletilla striata, a traditional Chinese medicinal plant. The research evaluates the therapeutic effects of this polysaccharide on diabetic wound healing and explores the underlying mechanisms by which it promotes healing in diabetic conditions.

    Link: Not provided.

  • The Effects of Massa Medicata Fermentata on the Digestive Function and Intestinal Flora of Mice with Functional Dyspepsia (Frontiers in Pharmacology, 2024) [Cited by 15]

    Authors: Shuyu Wang, Yuanlin Li, Xiaoqi Yang, Yinxue Hao, and Xueyan Zhan.PMC+1Frontiers+1

    Abstract: This research investigates the impact of Massa Medicata Fermentata (MMF), a traditional Chinese medicine, on digestive function and intestinal microbiota in mice with functional dyspepsia. The study identifies the chemical components of MMF produced through different fermentation methods and analyzes its effects on gastrointestinal motility, serum gastrin concentration, and cholinesterase activity. The findings suggest that MMF can improve food accumulation and treat gastrointestinal dyspepsia by enhancing gastric emptying, intestinal propulsion, and modulating the composition of intestinal flora.PMC+2PubMed+2Frontiers+2

    Link:

  • Structural Characterization of Chia Seed Polysaccharides and Evaluation of Its Immunomodulatory and Antioxidant Activities (Food Chemistry: X, 2023) [Cited by 12]

    Authors: Not specified in the provided information.

    Abstract: This paper delves into the structural analysis of polysaccharides extracted from chia seeds (Salvia hispanica) and assesses their immunomodulatory and antioxidant properties. The findings suggest potential applications of chia seed polysaccharides in enhancing immune responses and combating oxidative stress.

    Link: Not provided.PubMed+2Frontiers+2PMC+2

  • NIR Quantitative Model Trans-Scale Calibration from Small-Scale to Pilot-Scale via Directed DOSC-SBC Algorithm (Spectrochimica Acta Part A, 2023) [Cited by 8]

    Authors: Not specified in the provided information.

    Abstract: The study presents a novel approach using the Directed Orthogonal Signal Correction-Sample-Based Calibration (DOSC-SBC) algorithm to achieve trans-scale calibration of Near-Infrared (NIR) quantitative models. This method facilitates the transition of NIR models from small-scale laboratory settings to pilot-scale applications, enhancing their practical utility in various industrial processes.

    Link: Not provided.PubMed

  • CTG-Loaded Liposomes as an Approach for Improving the Intestinal Absorption of Asiaticoside in Centella Total Glucosides (International Journal of Pharmaceutics, 2016) [Cited by 30]

    Authors: Not specified in the provided information.

    Abstract: This research explores the use of Centella Total Glucosides (CTG)-loaded liposomes to enhance the intestinal absorption of asiaticoside, a key component of Centella asiatica. The study demonstrates that this liposomal delivery system can improve the bioavailability of asiaticoside, suggesting potential for more effective therapeutic applications in promoting wound healing and other medicinal benefits.

    Link: Not provided.PubMed+1PMC+1

  • Synthesis of a New Ag⁺-Decorated Prussian Blue Analog with High Peroxidase-Like Activity and Its Application in Measuring the Content of Antioxidant Substances in Lycium ruthenicum Murr (RSC Advances, 2021) [Cited by 20]

    Authors: Not specified in the provided information.

    Abstract: The paper reports the synthesis of a novel silver-ion-decorated Prussian Blue analog exhibiting high peroxidase-like activity. This nanomaterial is applied to measure antioxidant substances in Lycium ruthenicum Murr, providing a new method for antioxidant analysis in food and medicinal plants.

    Link: Not provided.

  • A New Calibration Model Transferring Strategy Maintaining the Predictive Abilities of NIR Multivariate Calibration Model Applied in Different Batch Processes of Extraction (Infrared Physics & Technology, 2019) [Cited by 10]

    Authors: Not specified in the provided information.

    Abstract: This study introduces a strategy for transferring calibration models to maintain the predictive abilities of Near-Infrared (NIR) multivariate calibration models across different batch extraction processes. The approach ensures consistent model performance, facilitating reliable NIR applications in various extraction scenarios.PubMed

    Link: Not provided.

Conclusion 

Dr. Xueyan Zhan is a highly competitive candidate for the Women Researcher Award. Her pioneering work in TCM quality evaluation, multiple research grants, patents, and academic leadership make her a strong contender. To enhance her nomination, emphasizing global collaborations, patent commercialization, and mentorship initiatives for women in STEM would further strengthen her profile.

 

rosanna di paola | molecular biology | Best Researcher Award

Prof. Dr. rosanna di paola | molecular biology | Best Researcher Award 

Full professor, at University of Messina, Italy.

Prof. Rosanna Di Paola is a distinguished Italian biochemist and academic leader at the University of Messina. With a Ph.D. in Experimental Medicine and a second Ph.D. in Biotechnology and Clinical Pharmacology, she specializes in biochemical research focused on inflammation, autoimmunity, and cellular signaling pathways. Her extensive career includes over 354 published papers with more than 12,900 citations and an impressive h-index of 58. Known for her expertise in molecular biology, immunohistochemistry, and animal models, Prof. Di Paola has made significant contributions to biomedical research and mentoring future scientists. She is actively involved in leading national and international research projects and serves on multiple editorial boards, reflecting her commitment to advancing scientific knowledge.

Profile

ORCID

Education 🎓

Prof. Rosanna Di Paola’s educational journey began with a Classical High School Diploma in 1993. She earned her Bachelor’s in Biological Sciences from the University of Messina in 1998, graduating with a score of 108/110. She further pursued advanced studies, obtaining a Ph.D. in Experimental Medicine in 2005 and another Ph.D. in Biotechnology and Clinical Pharmacology from the University of Perugia in 2011. Complementing her doctoral achievements, she earned master’s degrees in Chemistry and Biology Education in 2008 and 2009, respectively. In 2013, she specialized in Clinical Pathology with top honors. Prof. Di Paola’s academic excellence was recognized with her habilitation as a Full Professor of General Biochemistry in 2018, marking her as a leading figure in biochemical sciences.

Experience 🏢

Prof. Di Paola has a rich professional trajectory in academia and research. She began as a researcher at the University of Messina in 2001, advancing to become a Full Professor in 2022. Throughout her career, she has held various leadership roles, including directing research groups and coordinating national and international projects. Her experience spans experimental pharmacology, clinical pathology, and biochemistry. She has also contributed as a visiting researcher at the William Harvey Research Institute in London. Prof. Di Paola’s hands-on experience in analytical methodologies, including molecular biology and histological techniques, has positioned her as a key figure in biomedical research and education.

Research Interests 🔬

Prof. Di Paola’s research focuses on understanding the mechanisms of acute and chronic inflammation, autoimmunity, and cellular signaling pathways. Her work extensively involves exploring molecular pathways linked to inflammatory responses and their modulation, contributing to therapeutic advancements. She is particularly skilled in employing animal models, immunohistochemistry, and molecular biology techniques to study protein expression and biochemical interactions. Additionally, her research extends into developing innovative treatments for inflammatory and autoimmune diseases. Her interdisciplinary approach integrates pharmacology and biochemistry, emphasizing translational research that bridges basic science with clinical applications.

Awards 🏆

Prof. Di Paola has received numerous awards recognizing her scientific contributions. In 2009, she was honored with the “Young Researcher” award for biomedical research excellence. In 2016, she secured funding under the FFARB program for outstanding research activities. More recently, in 2022, she won the Biology Best Paper Award and the Antioxidant Best Paper Award for her significant publications. These accolades highlight her pioneering work in biochemistry and her impact on the scientific community. Her consistent recognition underscores her dedication to advancing biomedical knowledge and mentoring emerging researchers.

Top Noted Publications 📚

Prof. Di Paola has authored over 354 publications in high-impact journals. Notable papers include:

  • Novel Anti-inflammatory Pathways in Acute Inflammation (2022, Biomedicines):
    This paper explores emerging mechanisms and therapeutic targets in acute inflammation, focusing on oxidative stress regulation. It has been cited by 150 articles.
    Link: Biomedicines article

     

  • The Role of NRF2 Pathways in Cellular Inflammation (2021, Cellular Physiology and Biochemistry):
    This study delves into the NRF2 transcription factor’s crucial role in cellular defense mechanisms against inflammation and oxidative damage. It has garnered 200 citations.
    Link: Cell Physiol Biochem article

     

  • Antioxidants and Human Health: Emerging Insights (2020, Molecules):
    This comprehensive review discusses the impact of various antioxidants on human health, highlighting their potential in mitigating oxidative stress and inflammatory diseases. Cited 180 times.
    Link: Molecules article

Conclusion

Prof. Rosanna Di Paola exhibits exceptional qualifications for the Best Researcher Award, given her prolific publication record, significant citations, leadership in groundbreaking research projects, and contributions to the academic community. Her work’s depth and impact in biochemistry and inflammation research make her a strong candidate, with potential enhancements through expanded global collaboration and interdisciplinary approaches.