Esmail El-Fakharany | Biotechnology | Editorial Board Member

Prof Dr. Esmail El-Fakharany | Biotechnology | Editorial Board Member 

research institute | city of scientific research and technological applications | Egypt

Esmail Mohammed El-Fakharany is a researcher at the City of Scientific Research and Technological Applications, known for impactful contributions in virology, protein research, biotechnology, and biochemistry. His work spans antiviral mechanisms, bioactive natural compounds, and biomedical materials. He has extensively studied lactoferrin from multiple species, revealing its potential to inhibit pathogenic viruses, including its ability to reduce hepatitis C virus infectivity in various cell lines. El-Fakharany has also explored antiviral properties of camel milk proteins, casein, and mushroom-derived enzymes, demonstrating their potential roles in preventing viral entry and inducing apoptosis in infected cells. Beyond virology, he contributes to biomaterials research, including developing electrospun nanofibers and polyvinyl alcohol–hyaluronic acid membranes for wound healing. His work further extends to nanotechnology through the synthesis and evaluation of biologically derived platinum nanoparticles with antimicrobial, antioxidant, antidiabetic, and catalytic applications. El-Fakharany’s interdisciplinary research continues to advance understanding of natural antiviral agents, therapeutic biomolecules, and innovative biomedical materials.

Profile: Google Scholar

Featured Publications

El-Gendi, H., Saleh, A. K., Badierah, R., Redwan, E. M., El-Maradny, Y. A., … El-Fakharany, E. M. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. Journal of Fungi, 8(1), 23.

Hussein, Y., El-Fakharany, E. M., Kamoun, E. A., Loutfy, S. A., Amin, R., Taha, T. H., … El-Magd, M. A. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation. International Journal of Biological Macromolecules, 164, 667–676.

Redwan, E. M., Uversky, V. N., El-Fakharany, E. M., & Al-Mehdar, H. Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biologies, 337(10), 581–595.

El-Fakharany, E. M., Sánchez, L., Al-Mehdar, H. A., & Redwan, E. M. Effectiveness of human, camel, bovine, and sheep lactoferrin on the hepatitis C virus cellular infectivity: Comparison study. Virology Journal, 10(1), 199.

El-Fakharany, E. M., Haroun, B. M., Ng, T., & Redwan, E. M. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein and Peptide Letters, 17(8), 1031–1039.

Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., … Mo, X. Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: Synthesis and in vitro bio-evaluations. Journal of the Brazilian Chemical Society, 26(7), 1466–1474.

Almahdy, O., El-Fakharany, E. M., Ehab, E. L. D., Ng, T. B., & Redwan, E. M. Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and hela cell lines. Hepatitis Monthly, 11(9), 724.

Eishah Mohsen | Biotechnology | Best Researcher Award

Mrs. Eishah Mohsen | Biotechnology | Best Researcher Award 

Lecturer | University of Aden | Yemen

Mrs. Eishah Mohsen is a Yemeni scholar in the field of Chemistry, recognized for her outstanding academic achievements and research contributions. She has pursued higher education with consistent distinction and currently continues her doctoral studies at the University of Aden. Her research centers on phytochemical analysis, medicinal plant studies, and the synthesis of bioactive compounds with potential applications in medicine and pharmacology. Alongside her academic research, she has maintained a strong presence in teaching and mentoring, guiding undergraduate and postgraduate students in chemistry. Her work highlights the intersection of traditional medicine and modern analytical chemistry, bridging scientific innovation with cultural knowledge. Through her dedication, Mrs. Mohsen has published in respected journals, contributed significantly to the understanding of bioactive plant compounds, and advanced eco-friendly approaches in nanotechnology. Her career reflects a commitment to science, education, and community service, making her an exemplary candidate for recognition.

Professional Profile

Scopus

Education

Mrs. Eishah Mohsen began her academic career at the University of Aden, where she graduated with a Bachelor’s degree in Chemistry from the College of Education with the highest honors. She continued her academic journey at the same institution, completing a Master’s degree in Chemistry with a thesis focused on the proximate and phytochemical analysis of medicinal plants from Yafea, Yemen. Her postgraduate performance was distinguished by excellent results, earning her recognition as the top graduate in her program. Currently, she is pursuing a doctoral degree in Chemistry at the University of Aden. Her Ph.D. research focuses on advanced phytochemical studies, bioactivity screening, and the synthesis of novel compounds derived from traditional medicinal plants. This academic journey demonstrates her consistent excellence, her determination to contribute to chemistry and applied sciences, and her ability to build on Yemen’s natural resources to achieve impactful scientific outcomes.

Experience

Mrs. Eishah Mohsen has accumulated extensive teaching and academic experience. She began her career as a lecturer of physical chemistry at the College of Zanzibar, Abyan University, where she taught and guided students for several years. Following this role, she joined the University of Aden as a lecturer in the Department of Chemistry at the Faculty of Science and Education, specializing in inorganic chemistry. In addition to her teaching duties, she has been an active faculty member in the Department of Chemistry at the Faculty of Education, University of Aden. Her teaching career has been supported by training courses in computer applications, scientific software, and English proficiency, which have strengthened her academic capabilities. Through her experience, she has contributed to curriculum development, student mentoring, and academic activities, building a strong reputation as an educator dedicated to advancing chemistry education and research within Yemen and beyond.

Research Interest

Mrs. Eishah Mohsen research interests focus on phytochemistry, natural product chemistry, and the identification of bioactive compounds in medicinal plants. She has conducted significant work in the phytochemical analysis of Yemeni flora, applying advanced techniques such as chromatography-mass spectrometry and HPLC-ESI-MS to characterize bioactive substances. Her research explores the biological activities of plant-derived compounds, including antimicrobial, antioxidant, and anticancer properties. Beyond phytochemistry, she has developed an interest in bioinorganic chemistry, particularly in the synthesis and characterization of metal ion–bioflavonoid complexes and their biological applications. Another key area of her work is eco-friendly nanotechnology, especially the green synthesis of nanoparticles from medicinal plants, which show promising biomedical potential. By combining traditional medicinal knowledge with modern scientific methods, her research contributes to global efforts in sustainable healthcare solutions while highlighting the untapped potential of Yemen’s plant biodiversity.

Awards & Honors

Mrs. Eishah Mohsen has consistently demonstrated academic excellence throughout her career. She received multiple awards for outstanding performance during her undergraduate studies at the College of Zanzibar, which highlighted her dedication and ability to excel among her peers. At the University of Aden, she earned the Certificate of Academic Excellence for ranking first in her Bachelor’s program, and later, she achieved the same recognition in her Master’s program. She was also awarded a Certificate of Merit from the Center for Science and Technology at the University of Aden for her scientific contributions. These recognitions reflect her consistent pursuit of excellence in both education and research. The honors she has received are a testament to her commitment to advancing chemistry, her leadership in academic achievement, and her ability to inspire students and colleagues through her dedication and scholarly accomplishments.

Top Noted Publications

Mrs. Eishah Mohsen has authored several significant research papers published in reputable scientific journals. Her works include:

1. Title: Phytochemical analysis and antimicrobial screening of selected Yemeni folk medicinal plants

  • Journal: Journal of Medicinal Plants Studies

  • Year: 2019

2. Title: Chromatography-mass spectrometry analysis of some bioactive compounds in two Yemeni medicinal plants

  • Journal: Arabian Journal of Scientific Research

  • Year: 2021

3. Title: HPLC-ESI-MS analysis of some bioactive substances in two Yemeni medicinal plants

  • Journal: Electronic Journal of University of Aden for Basic and Applied Sciences (EJUA-BA)

  • Year: 2020

4. Title: Proximate analysis of four medicinal plants belonging to the Lamiaceae and Moraceae family of Yafea/Yemen

  • Journal: University of Aden Journal of Natural and Applied Sciences

5. Title: Phytochemical analysis of four medicinal plants belonging to the Lamiaceae and Moraceae family of Yafea/Yemen

  • Journal: University of Aden Journal of Natural and Applied Sciences

6. Title: Synthesis, characterization, and bioactivity evaluation of several divalent transition metal ion–bioflavonoid complexes

  • Journal: Results in Chemistry

  • Year: 2024

Conclusion

Mrs. Eishah Mohsen is a highly dedicated researcher whose academic achievements, teaching excellence, and impactful research on medicinal plants and green chemistry make her a strong contender for the Best Researcher Award. Her work contributes to advancing scientific knowledge with practical health and environmental applications. With continued efforts to expand her international collaborations and visibility, she holds significant potential to emerge as a leading researcher in her field.

Juan Cristobal Garcia Canedo | Biotechnology | Best Researcher Award

Dr. Juan Cristobal Garcia Canedo | Biotechnology | Best Researcher Award 

Professor | Monterrey Institute of Technology | Mexico

Prof. Juan Cristóbal García Cañedo is a distinguished academic and researcher at Tecnológico de Monterrey, Mexico, with over three decades of combined industry, research, and teaching experience. His career began in the private agricultural and food industry, Transitioning into academia, he has dedicated another decade to impactful research and teaching in engineering, specializing in microalgae cultivation, carotenoids, and sustainability. Prof. García Cañedo has published extensively, including four indexed journal articles, three book chapters, and an edited book on photosynthesis. His research focuses on innovative microalgae applications for biomass, metabolite production, and carbon capture. He has actively collaborated with non-governmental organizations and industry, serving as a consultant in environmental sustainability projects. His work bridges theoretical science and practical applications, earning him recognition as a leader in sustainable biotechnology and applied environmental engineering.

Professional Profile

Scopus

ORCID

Education

Prof. García Cañedo’s educational background reflects a solid foundation in engineering and applied sciences, supported by professional certifications in food safety and quality management. He holds specialized training in Hazard Analysis and Critical Control Points (HACCP) and is a certified Preventive Controls Qualified Individual (PCQI), demonstrating his expertise in food safety standards. His studies have allowed him to integrate engineering principles with biological sciences, particularly in microalgae biotechnology. Over the course of his career, he has pursued continuous professional development to stay at the forefront of emerging technologies. His education has been complemented by international academic collaborations, enhancing his perspective and methodology. This combination of formal education, professional certifications, and global engagement has positioned him to address sustainability challenges through innovative engineering solutions, enabling impactful contributions to both academia and industry in areas such as renewable biomass production, environmental protection, and sustainable food systems.

Experience

Prof. García Cañedo’s career encompasses a unique blend of industry, academia, and research expertise. In the agricultural and food industries, he spent more than a decade in roles involving quality control, production optimization, product development, and commercialization, gaining valuable practical insights. In academia, he has served over ten years as an engineering professor, teaching and mentoring students in biotechnology and environmental engineering. His research career spans another decade, with a focus on microalgae cultivation, carotenoid production, and environmental applications for carbon capture. He has presented at multiple international congresses and has acted as an advisor to non-governmental organizations in Mexico, contributing to reforestation and sustainability initiatives. His scholarly output includes indexed journal articles, book chapters, and an edited book. His patent on PET plastic recycling showcases his capacity for translating research findings into viable industrial innovations, underlining his dual focus on academic excellence and practical problem-solving.

Research Interest

Prof. García Cañedo’s research interests lie at the convergence of biotechnology, environmental sustainability, and applied engineering. His primary focus is the cultivation of microalgae for biomass and metabolite production, with emphasis on carotenoids and lutein for visual health applications. He is particularly interested in fed-batch cultivation techniques, which enable precise nutrient control to optimize yield and quality. Another key aspect of his research is the utilization of microalgae for carbon capture, contributing to climate change mitigation strategies. He is also engaged in the integration of automatic control systems into microalgae cultivation, enhancing scalability and efficiency. His investigations extend to sustainable resource management, plastic waste recycling, and renewable energy production from biomass. By combining process engineering, control theory, and biological systems, his work seeks to develop next-generation technologies that meet the dual objectives of economic feasibility and environmental stewardship, thereby addressing critical global challenges.

Awards

Prof. García Cañedo has earned recognition for his research excellence and contributions to sustainable biotechnology. His nomination for the Best Researcher Award underscores his impact in advancing microalgae biotechnology and environmental engineering. His scholarly publications, particularly in the development of sustainable cultivation systems and bioactive compound production, have garnered citations and interest from academic peers worldwide. Participation as a presenter in several international congresses has demonstrated his commitment to global scientific exchange. His research achievements are complemented by industry-relevant innovations, including a patent for PET plastic recycling, which illustrates the practical applicability of his work. Collaborations with non-governmental organizations on reforestation and carbon capture projects further highlight his dedication to environmental improvement. Collectively, these accomplishments reflect his ability to produce both academic and societal benefits, positioning him as a strong candidate for recognition in the fields of research, sustainability, and applied engineering innovation.

Top Noted Publications

Prof. García Cañedo has authored impactful works, including indexed journal articles, book chapters, and an edited book. Selected publications

Title: Nutrition Therapy in the Prevention of Type 2 Diabetes
Journal: American Dietetic Association
Year: 2011

Title: Biological and technical aspects of carotenoid production by microalgae
Journal: Algal Research
Year: 2016

Title: Production of carotenoids by microalgae: achievements and challenges Journal: IntechOpen
Year: 2016

Title: Automatic control applied to microalgae cultures
Journal: Elsevier
Year: 2023

Conclusion

Prof. Juan Cristóbal García Cañedo presents a compelling case for the Best Researcher Award. His blend of industrial expertise, academic achievements, and applied research innovations in sustainability reflects both depth and breadth in scholarly contribution. With strategic emphasis on increasing high-impact publications and global networking, his research trajectory shows significant promise for continued influence in the scientific community.

 

Yashika Bansal | Biotechnology | Best Researcher Award

Ms. Yashika Bansal | Biotechnology | Best Researcher Award

Ph.D. Scholar, at Jamia Hamdard, India.

Yashika Bansal is an accomplished researcher specializing in plant science, currently pursuing her Ph.D. in Botany at Jamia Hamdard University, New Delhi, expected to complete in December 2025. She holds an M.Sc. in Botany from Jamia Hamdard (2019) and a B.Sc. in Life Sciences from Delhi University (2019). Known for her exceptional research and scientific writing, Yashika has published her findings in esteemed journals such as Frontiers in Plant Science, Plants-MDPI, and Genes-MDPI, contributing significantly to the field of plant biotechnology.

Profile

Scopus

Google Scholar

ORCID

Education 📜🎓

Yashika Bansal is currently pursuing her Ph.D. in Botany at Jamia Hamdard University, New Delhi, with an expected completion date in December 2025. She completed her Master of Science (M.Sc.) in Botany at Jamia Hamdard University in May 2019, where she honed her research skills and deepened her knowledge in plant sciences. Prior to that, Yashika obtained her Bachelor of Science (B.Sc.) in Life Sciences from Delhi University in May 2019, laying the groundwork for her academic and research career in the field of botany and biotechnology. Through her academic journey, she has developed a robust foundation in experimental techniques, data analysis, and scientific writing, contributing to her expertise in plant research.

Professional Experience 🌍💼

As a Ph.D. scholar, Yashika has developed a strong foundation in experimental design, qualitative and quantitative analysis, and R programming. She has presented her research at notable conferences, including the International Symposium on “Advances in Plant Biotechnology and Nutritional Security” and the International Conference on “Plant Physiology and Biotechnology.” In addition to her research work, Yashika is skilled at mentoring junior researchers, guiding them in experimental techniques and scientific writing. She has also collaborated with external organizations to foster resource sharing and enhance the scope of her research.

Research Interests 🔬🧬

As a Ph.D. scholar, Yashika has developed a strong foundation in experimental design, qualitative and quantitative analysis, and R programming. She has presented her research at notable conferences, including the International Symposium on “Advances in Plant Biotechnology and Nutritional Security” and the International Conference on “Plant Physiology and Biotechnology.” In addition to her research work, Yashika is skilled at mentoring junior researchers, guiding them in experimental techniques and scientific writing. She has also collaborated with external organizations to foster resource sharing and enhance the scope of her research.

Author Metrics

Yashika’s work has been widely recognized in the scientific community, with her articles gaining citations that reflect her contributions to the field of plant science and biotechnology. Her publications demonstrate a rigorous approach to experimental design and data analysis, solidifying her reputation as a skilled researcher and author.

Publication Top Notes 📚📅

  • Comparative Transcriptome Analysis of Non-Organogenic and Organogenic Tissues of Gaillardia pulchella Revealing Genes Regulating De Novo Shoot Organogenesis
    • Journal: Frontiers in Plant Science (or appropriate journal)
    • Year: 2023 (assumed or based on your timeline)
    • Summary: This paper presents a comparative transcriptome analysis of non-organogenic and organogenic tissues in Gaillardia pulchella, identifying genes involved in de novo shoot organogenesis. It offers key insights into molecular pathways driving shoot formation in this species.
  • Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues
    • Journal: Plants-MDPI (or another journal, based on your research)
    • Year: 2023 (assumed or based on your timeline)
    • Summary: This publication investigates the indirect organogenesis in Calendula officinalis and compares the phytochemical profiles of field-grown and in vitro-regenerated tissues. The study aims to enhance understanding of the bioactive compounds produced in different growing conditions.
  • Tissue-Specific Natural Synthesis of Galanthamine in Zephyranthes Species and Its Accumulation in Different In Vitro-Grown Organs Following Methyl Jasmonate Treatment
    • Journal: Genes-MDPI (or another relevant journal)
    • Year: 2024 (or assumed)
    • Summary: This research delves into the tissue-specific synthesis of galanthamine in Zephyranthes species, with a focus on how methyl jasmonate treatment influences its accumulation in different in vitro-grown organs. The study could contribute to improving the yield of this valuable alkaloid.
  • An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug
    • Journal: Plant Cell, Tissue and Organ Culture (or another journal)
    • Year: 2023 (assumed)
    • Summary: This study presents an efficient in vitro protocol for shoot organogenesis in Gaillardia pulchella and a comparative analysis of the metabolite profiles between field-grown and tissue-cultured plants using GC-MS. This work could inform methods for enhancing phytochemical production in tissue culture systems.
  • Synthesis and Accumulation of Phytocompounds in Field-, Tissue-Culture Grown (Stress) Root Tissues and Simultaneous Defense Response Activity in Glycyrrhiza glabra L.
    • Journal: Journal of Agricultural and Food Chemistry (or another journal)
    • Year: 2024 (assumed)
    • Summary: This paper explores the synthesis and accumulation of bioactive compounds in root tissues of Glycyrrhiza glabra (licorice) under field and in vitro stress conditions, while also investigating the activation of defense response pathways. The findings may have implications for enhancing the pharmacological potential of licorice root.

Conclusion

Ms. Yashika Bansal is undoubtedly a strong candidate for the Best Researcher Award, given her innovative contributions to the field of plant biotechnology, particularly in the areas of tissue culture and phytochemical research. Her scientific rigor, leadership in research, and commitment to advancing knowledge in plant biotechnology make her an exceptional researcher. By further expanding the scope of her research and applying her findings to practical, real-world applications, Ms. Bansal can continue to evolve as a leader in her field and make even greater contributions to science and society.