Can Yang Zhang | Biotechnology | Best Researcher Award

Assoc. Prof. Dr. Can Yang Zhang | Biotechnology | Best Researcher Award

Associate Professor, at Tsinghua University, China.

Dr. Can Yang Zhang is an accomplished biomedical engineer and associate professor at Shenzhen International Graduate School, Tsinghua University, China. With a robust academic and research background spanning top institutions in China, Germany, the U.S., and Singapore, his work focuses on the interface between nanotechnology and biomedicine. 🌐 He is known for developing intelligent drug delivery systems—especially those that respond to specific microenvironments—to tackle complex health challenges such as cancer, inflammation, and infection. 🧬 Dr. Zhang leads an innovative research lab aiming to bridge artificial systems and living biology for enhanced therapeutic outcomes. Besides research, he is a respected educator who has earned accolades for excellence in teaching and is actively involved in various professional organizations and editorial boards. 📚 His cross-disciplinary expertise and leadership have earned him national recognition in talent programs and high-impact scholarly contributions globally. 🌍

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education 

Dr. Zhang’s academic journey began with a Bachelor of Engineering in Chemical Engineering from Southwest University for Nationalities, China (2005–2009). 🎓 He pursued his Ph.D. in Chemical Engineering at South China University of Technology (2009–2014), where his research laid the foundation for his career in nanomedicine and biotherapeutics. During his doctoral studies, he was selected as a Visiting Ph.D. Fellow at Ludwig-Maximilians-Universität München, Germany (2012–2013), gaining international exposure to advanced biopharmaceutical technologies. 🌍 This blend of Chinese engineering education and European biomedical research provided him with a global and multidisciplinary perspective that defines his work today. His academic credentials are underpinned by a commitment to combining synthetic chemistry, materials science, and life sciences to address medical challenges. 🔬

🧪 Experience 

Dr. Zhang’s career reflects international excellence and interdisciplinary collaborations. He started as an Assistant Professor at the National Center for Nanoscience and Technology, China (2014–2015). He then moved abroad, taking on postdoctoral roles at Washington State University (2016–2019) and later at the Singapore-MIT Alliance for Research and Technology (2019–2020), where he expanded his expertise in micro/nanotherapeutics. 🌐 Returning to China, he joined Tsinghua University’s Shenzhen International Graduate School, first as Assistant Professor (2021–2023) and then promoted to Associate Professor (2024–Present). 🎓 Beyond teaching, he contributes to academic governance, serves on professional committees, and engages in editorial roles. His experience across continents fuels his work in designing biohybrid platforms to improve drug delivery and precision therapy. 🧫

🔬 Research Interests 

Dr. Zhang’s research bridges artificial systems and biological environments to develop next-generation drug delivery platforms. 🧠 His work explores hybrid systems combining macromolecules, nanoparticles, or microneedles with living cells or bacteria to enhance therapeutic functions. Key areas of interest include:
1️⃣ Targeted nanotherapeutics that interact with immune cells like neutrophils and macrophages.
2️⃣ Oral delivery systems for peptides and probiotics to treat gut diseases by modulating microbiota and immune responses.
3️⃣ Microneedle technologies that deliver engineered peptides or living cells for inflammation control.
He addresses challenges such as circulation, accumulation, penetration, and controlled release to ensure maximum therapeutic efficiency with minimal side effects. 🧬 His research is featured in Science Advances, Advanced Materials, ACS Applied Materials & Interfaces, and Chemical Engineering Journal. 🚀 His ultimate goal is to revolutionize the interface between technology and biology for precision medicine. 🧑‍⚕️

🏆 Awards 

Dr. Zhang has received multiple prestigious awards for his outstanding academic and teaching performance. 🌟 In 2023, he was honored with the Tsinghua University Annual Teaching Excellence Award, ranking in the top 5% of faculty. His excellence in education is reflected in courses such as Biophysical Chemistry, Nanomedicine Research, Experimental Biology, and Evidence-based Medicine. 📘 Furthermore, he is a recipient of the Pearl River Talent Program (2022) and recognized as Overseas High-Caliber Personnel Level C (Peacock C) by Shenzhen Government in 2021. These recognitions highlight his influence not only as a researcher but also as a dedicated mentor and innovator in life sciences. 🧑‍🏫

📚 Top Noted Publications 

Dr. Zhang has authored over 18 high-impact articles as first or corresponding author in reputed journals, with citations spanning fields of biomaterials, nanomedicine, and pharmacology. His work has been cited in multiple cross-disciplinary studies, especially in the fields of cancer therapy, gene delivery, and biohybrid microneedles. 🔍
Full publication list here

ACS Applied Bio Materials (2024)

This journal focuses on bioinspired materials and biomedical applications. Notable papers include:​Test Publications China

  • “Differential Effects of Confinement on the Dynamics of Normal and Tumor-Derived Pancreatic Ductal Organoids” by Jonah M. Rosas et al. (Nov 22, 2024)

  • “Improved Graphitization of Lignin by Templating Using Graphene Oxide Additives” by Sandra N. Ike et al. (Nov 21, 2024)

  • “A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research” by Ruchira Chakraborty et al. (Nov 20, 2024)

  • “Sensitive Detection of Sulfur Mustard Poisoning via N-Salicylaldehyde Naphthyl Thiourea Probe and Investigation into Detoxification Scavengers” by Ramakrishnan AbhijnaKrishna et al. (Nov 20, 2024)

  • “Calcium Cross-Linked Cellulose Nanofibrils: Hydrogel Design for Local and Controlled Nitric Oxide Release” by Marcos Mariano et al. (Nov 20, 2024)

  • “Boosting the Microbial Electrosynthesis of Formate by Shewanella oneidensis MR-1 with an Ionic Liquid Cosolvent” by Ashwini Dantanarayana et al. (Nov 20, 2024)

  • “Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications” by Dulexy Solano-Orrala et al. (Nov 20, 2024)

  • “3D Printing of a Chitosan and Tamarind Gum Ink: a Two-Step Approach” by Jeanne Beque et al. (Nov 19, 2024)American Chemical Society Publications

These articles are available on the ACS Publications website.Test Publications China

Materials Today (2023)

Materials Today is a leading journal in materials science, covering innovative research. Some highlighted papers from 2023 include:​ScienceDirect

  • “Is alloying a promising path to substitute critical raw materials?” by François Rousseau et al. (March–April 2025)

  • “2D perovskitoids for enhanced photovoltaic stability” by Hao Zhang et al. (March–April 2025)

  • “Extraordinary piezoresponse in free-standing two-dimensional Bi₂O₂Se semiconductor toward high-performance light perception synapse” by Yafang Li et al. (March–April 2025)

  • “Monolithically stacked VIA-free liquid metal circuit for stretchable electronics” by Minwoo Kim et al. (March–April 2025)

  • “Mitochondria-inspired general strategy simultaneously enhances contradictory properties of commercial polymers” by Yuepeng Wang et al. (March–April 2025)

  • “Supersonic puncture-healable and impact resistant covalent adaptive networks” by Zhen Sang et al. (March–April 2025)

  • “Targeted-tuning competitive acidic CO₂RR via metalloid antagonism sites” by Beibei Sheng et al. (March–April 2025)

  • “Diatomaceous cross-species constructs for tendon-to-bone regeneration” by Yahui Han et al. (March–April 2025)ScienceDirect

These articles can be accessed through ScienceDirect.ScienceDirect+1ScienceDirect+1

Chemical Engineering Journal (2024, 2022)

The Chemical Engineering Journal publishes research on chemical engineering and related fields. Key topics include:​

  • Emerging materials and processes for green conversion of resources

  • Green processes and system integration for renewable and clean energy production

  • Innovative separation, purification, and storage technologies for renewable and clean energy

  • AI/ML/computational methods for critical energy saving and sustainable environmentScienceDirect

Specific articles from 2024 and 2022 can be found on ScienceDirect.ScienceDirect+2ScienceDirect+2ScienceDirect+2

Conclusion

Dr. Can Yang Zhang is highly suitable for the Best Researcher Award.
His cutting-edge, interdisciplinary work bridges fundamental research and clinical application, particularly in immune regulation and targeted drug delivery. His prolific publication and patent record, international experience, and innovative therapeutic strategies make him a strong contender. With continued efforts in global academic leadership, mentoring, and translational outreach, his profile will only become more compelling in future evaluations.

Rokaia Lejri | Biotechnology | Best Researcher Award

Dr. Rokaia Lejri | Biotechnology | Best Researcher Award

Doctorate, at Faculty of science of Gafsa, Tunisia.

Dr. Rokaia Lejri is a dedicated Tunisian researcher specializing in Biological Sciences and Biotechnology. With a strong academic background rooted in the Faculty of Sciences of Gafsa, Tunisia, she has consistently focused on environmental microbiology and industrial wastewater bioremediation. Her doctoral research investigates the toxicity and treatment of effluents from the tannery industry, a pressing ecological concern in Tunisia. Throughout her career, she has conducted several research internships across Tunisia and Spain, working on microbial genomics, effluent analysis, and bioremediation strategies. Dr. Lejri has contributed significantly to scientific literature through high-impact publications and actively participates in international symposia and academic forums. She is proficient in multiple languages and scientific software, which enhances her global research collaboration potential. Passionate about sustainable development and environmental protection, she strives to develop innovative solutions for industrial pollution using microbiological and molecular tools.

Professional Profile

Scopus

Google Scholar

🎓 Education 

Dr. Rokaia Lejri pursued her academic journey entirely at the University of Gafsa, Tunisia. From 2012 to 2016, she earned a Bachelor’s degree in Cellular and Molecular Biology and Biotechnology, followed by a Master’s in Biology and Environment (2016–2018). Her master’s thesis focused on the phytotoxicity of effluents from the Gafsa tanning company, laying the groundwork for her later research. In 2020, she began her Ph.D. in Biological Sciences and Biotechnology at the same institution. Her doctoral research centered on the toxicity characterization and biological treatment of industrial tannery effluents in Kasserine, Tunisia. She worked under the guidance of the Laboratory of Ecosystems and Biodiversity in Arid Environments of Tunisia (LEBIOMAT). Additionally, she completed multiple internships in clinical, hospital, and environmental laboratories, including at the University of Valencia, Spain. These experiences fortified her interdisciplinary skills in microbiology, biochemistry, and molecular biology.

💼 Experience 

Dr. Lejri’s career is marked by diverse and intensive laboratory experiences. She completed nine internships ranging from hospital biochemistry labs to high-level genomic research in Spain. Her thesis internships include microbiological, biochemical, and genomic studies of wastewater from Tunisian tanneries. Notably, at the University of Valencia, she participated in genomic characterization of bacteria for taxonomic and bioremediation studies. Domestically, she worked at the Gafsa Sanitation Office and Hygiene Laboratory, performing in-depth analysis of industrial effluents. Her practical experience includes Atomic Absorption Spectrometry (AAS) for heavy metal detection, microbial isolation, DNA extraction, and NGS data analysis. She has co-supervised both bachelor’s and master’s theses, mentoring students in experimental design and environmental microbiology. Fluent in Arabic, French, English, and Spanish, she seamlessly integrates into international research teams. Dr. Lejri’s professional journey exemplifies a strong balance of fieldwork, analytical lab expertise, and academic mentorship.

🔍 Research Interest 

Dr. Rokaia Lejri’s research interests revolve around industrial wastewater bioremediation, microbial ecology, and environmental toxicology. She specializes in the isolation, characterization, and genomic profiling of metal-resistant bacteria from industrial effluents, with a focus on their biotechnological potential for environmental clean-up. Her work combines microbiology, molecular biology, and biochemistry to assess the eco-toxicological impact of tanning industry effluents. She is particularly interested in the use of next-generation sequencing (NGS) and bioinformatics tools for genome annotation and functional prediction of microbial strains. Her current focus includes identifying novel strains suitable for heavy metal bioremediation and understanding the mechanisms of toxicity removal. Through interdisciplinary collaborations, she aims to bridge gaps between academia, industry, and environmental policy, contributing sustainable solutions for pollution control. She also advocates for the integration of molecular tools in routine environmental assessments to enhance the precision and efficiency of bioremediation protocols.

🏆 Awards 

Dr. Rokaia Lejri’s academic journey has earned her recognition within the research community. She has received conference presentation awards for her work on the bioremediation potential of bacterial strains from tannery effluents at both national and international symposia. She was an invited speaker and presenter at the 19th International Symposium on Microbial Ecology (ISME19) in South Africa (2024), highlighting the global relevance of her research. Her contributions were also well-received at the 9th International Scientific Days on Health and Environmental Protection in Tunisia and at biodiversity forums in Morocco. In addition to being recognized for oral and poster presentations, Dr. Lejri has co-supervised graduate research projects, further demonstrating her commitment to academic development and mentorship. Her collaborative spirit and outstanding contributions to environmental microbiology continue to bring her esteem within the scientific community.

📚 Top Noted Publications

Dr. Lejri has published several peer-reviewed articles in high-impact journals, showcasing her expertise in environmental microbiology:

1. Physico-Chemical, Microbial and Toxicity Assessment of Industrial Effluents from the Southern Tunisian Tannery

  • Journal: Journal of Water Process Engineering, 2022

  • DOI: 10.1016/j.jwpe.2022.102686 OUCI

  • Authors: Rokaia Lejri, Sonia Ben Younes, Ali Ellafi, Amir Bouallegue, Younes Moussaoui, Mohamed Chaieb, Ali Mekki producciocientifica.uv.es+2OUCI+2SSRN+2

  • Highlights:

    • Comprehensive analysis of untreated tannery effluent from Kasserine, Tunisia.SSRN

    • Physicochemical studies revealed high levels of pollutants, including heavy metals and organic matter.

    • Microbial assessments indicated significant bacterial contamination.

    • Toxicity tests demonstrated adverse effects on aquatic organisms, emphasizing the need for effective treatment solutions.

2. Phenotypic Characterization for Bioremediation Suitability of Isolates from Southern Tunisian Tannery Effluent

  • Journal: Microbiological Research, 2024

  • DOI: 10.1016/j.micres.2024.127771 producciocientifica.uv.es+1OUCI+1

  • Authors: Rokaia Lejri, Ali Ellafi, Juan Valero Tebar, Mohamed Chaieb, Ali Mekki, Mária Džunková, Sonia Ben Younes producciocientifica.uv.es+2OUCI+2SSRN+2

  • Highlights:

    • Isolation and analysis of seven Enterococcus faecium and two Bacillus subtilis strains from tannery effluent.PubMed

    • Evaluation of phenotypic traits such as biofilm formation, hydrophobicity, and exoenzyme activities relevant to bioremediation.PubMed

    • Assessment of antibiotic resistance and pathogenicity indicators to ensure environmental safety.PubMed

    • Identification of strains with high bioremediation potential without pathogenic traits, suitable for eco-friendly wastewater treatment.PubMed

3. Genomic Features of Metal-Resistant Bacteria Suitable for Tannery Effluent Bioremediation

  • Journal: Journal of Water Process Engineering, 2024

  • DOI: 10.1016/j.jwpe.2024.106406 OUCI

  • Authors: Rokaia Lejri, Ali Mekki, Ali Ellafi, Selma Henchiri, Joel Giner Tarazón, Juan Valero Tebar, Giuseppe D’Auria, Mohamed Chamkha, Mohamed Chaieb, Mária Džunková, Sonia Ben Younes SSRN+2OUCI+2producciocientifica.uv.es+2

  • Highlights:

    • Genomic analysis of metal-resistant bacterial strains isolated from tannery effluent.

    • Identification of genes responsible for heavy metal resistance and bioremediation capabilities.

    • Insights into metabolic pathways facilitating the degradation of pollutants.

    • Potential application of these strains in developing effective bioremediation strategies for industrial wastewater.

Conclusion

Dr. Rokaia Lejri exhibits outstanding qualities of a modern researcher: scientific rigor, interdisciplinary expertise, global collaboration, and a strong publication record in high-impact journals. Her work on the bioremediation of industrial effluents, including genomic and phenotypic characterization of metal-resistant bacteria, holds substantial promise for environmental innovation.