Laura Estrada | Molecular Biology | Best Researcher Award

Prof. Laura Estrada | Molecular Biology | Best Researcher Award 

Researcher | Physics department University of Buenos Aires | Argentina

Prof. Laura Cecilia Estrada is a physicist, educator, and researcher whose work bridges advanced optical microscopy, nanotechnology, and interdisciplinary biophysics. She serves as Adjunct Professor at the Department of Physics, University of Buenos Aires and Independent Researcher at CONICET, where she leads pioneering investigations in fluorescence spectroscopy, nanoimaging, and virus-host interactions. Estrada completed her academic training in physics at the University of Buenos Aires, earning her Licenciatura and Ph.D. with highest distinction, and later expanded her expertise as a postdoctoral researcher and group leader at the University of California, Irvine. Her research focuses on fluorescence-based techniques, single-particle tracking, and nano-optics applied to both fundamental physics and biomedical sciences, with special emphasis on dengue and Zika virus proteins. Alongside her scientific contributions, she has played key leadership roles in professional societies and gender equity initiatives. Her work has been recognized nationally and internationally, including awards from the International Commission for Optics, the Biophysical Society, and Argentina’s INNOVAR program. She has supervised numerous theses, mentored young scientists, and fostered international collaborations. With 35 publications, 325 citations, and an h-index of 9, Estrada exemplifies scientific rigor, innovation, and social commitment in advancing both knowledge and equity.

Profile: Scopus

Featured Publications

Sallaberry, I., & Estrada, L. Unraveling viral protein-host membrane interaction for dengue and Zika. Biophysical Journal.

Leon, A., Sallaberry, I., Estrada, L., & Scorticati, C. Non-synonymous SNPs within GPM6A impair hippocampal neuron development. Biochimica et Biophysica Acta, 1872(3). Cited by 2.

Salzman, V., & Estrada, L. Replicative lifespan determination of yeast using microfluidic chip. Biology Open, 13(11). Cited by 5.

Gaggioli, E., Estrada, L., & Bruno, O. Boundary layer structures in transport theory. Physical Review E, 110. Cited by 3.

Philipp, N., Gratton, E., & Estrada, L. Protein-membrane interaction via radial FCS. Methods and Applications in Fluorescence, 11(4). Cited by 12.

Gabriel, M., & Estrada, L. Dengue Virus Capsid Protein Dynamics in live cells. Scientific Reports, 10. Cited by 45.

Guoyin Liu | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Guoyin Liu | Molecular Biology | Best Researcher Award 

Attending physician and associate professor, at Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.

Dr. Guoyin Liu is an accomplished attending physician and associate professor at Jinling Hospital, Nanjing University, renowned for his expertise in orthopedics, inflammatory signaling, and regenerative medicine. Holding a PhD from Nanjing Medical University, he specializes in endoplasmic reticulum (ER) molecular chaperones such as GRP78/Bip and their role in critical orthopedic conditions including rheumatoid arthritis, osteoarthritis, chronic wounds, and periprosthetic osteolysis. Beyond molecular research, he pioneers innovative treatments like extracorporeal shock wave therapy, needle-knife therapy, and restorative laminoplasty techniques for spinal reconstruction. His translational research bridges basic science with clinical applications, contributing to novel interventions for musculoskeletal disorders. With an impressive portfolio of high-impact publications, key research grants, patents, and editorial board memberships, Dr. Liu exemplifies a commitment to advancing orthopedic science and patient care. His innovative contributions continue to shape the future of orthopedic diagnostics and treatments, fostering breakthroughs in bone regeneration and inflammatory disease management.

Professional Profile

Scopus

ORCID

🎓 Education 

Dr. Liu completed his PhD at Nanjing Medical University, focusing on the molecular mechanisms underlying inflammatory bone loss and tissue degeneration. His academic foundation integrates basic medical sciences, clinical orthopedics, and bioengineering approaches, enabling him to investigate complex orthopedic diseases at the cellular and molecular levels. During his training, he mastered advanced experimental techniques, including finite element biomechanical analysis, tissue engineering methodologies, and translational clinical trials. Dr. Liu expanded his academic horizon through specialized workshops in regenerative medicine, musculoskeletal biomechanics, and immunomodulation therapies. His education laid the groundwork for his pioneering research on GRP78/Bip signaling pathways in chronic musculoskeletal diseases. By blending clinical insights with experimental rigor, he has become a leading voice in developing innovative therapies for orthopedic patients. His educational journey reflects a seamless integration of theory and practice, empowering him to address both clinical challenges and fundamental biomedical questions with cutting-edge research approaches.

💼 Experience 

With over 15 years of combined clinical and research experience, Dr. Guoyin Liu has established himself as a leading expert in orthopedic surgery, translational research, and regenerative medicine. As an Attending Physician and Associate Professor at Jinling Hospital, he manages complex cases such as spinal deformities, chronic joint diseases, and osteolytic conditions. His academic tenure includes supervising multidisciplinary research projects funded by National Natural Science Foundation of China and provincial grants focusing on inflammatory pathways and bone regeneration. He has innovated surgical techniques like restorative laminoplasty with miniplate fixation, which has improved postoperative spinal stability and patient recovery outcomes. His extensive clinical experience is complemented by editorial board appointments in reputed international journals, reflecting his scientific leadership. Dr. Liu’s dual role as a clinician and researcher enables him to directly translate benchside discoveries into bedside applications, ensuring tangible benefits for patients suffering from chronic orthopedic disorders.

🔬 Research Interests 

Dr. Liu’s research is centered on cellular stress responses and inflammatory pathways in orthopedic diseases, with a special focus on endoplasmic reticulum molecular chaperones (GRP78/Bip) and their dual intracellular and extracellular roles. He investigates how particle-induced osteolysis, rheumatoid arthritis, and intervertebral disc degeneration are driven by inflammatory cascades, aiming to develop targeted molecular therapies. Another significant area of his research explores chemical chaperones like 4-Phenylbutyrate, which mitigate ER stress and improve bone regeneration. Dr. Liu also advances biomechanical engineering solutions, analyzing finite element models to improve spinal fixation techniques. Additionally, he integrates shockwave therapy, corticosteroid injections, and minimally invasive interventions for managing chronic orthopedic pain. His translational approach bridges basic science, bioengineering, and clinical orthopedics, leading to innovative strategies that reduce surgical complications and improve musculoskeletal repair. Through his research, Dr. Liu aims to redefine the diagnosis, prevention, and treatment of bone and joint diseases in aging populations.

🏆 Awards & Honors 

Dr. Liu has received numerous academic and clinical recognitions for his groundbreaking work in orthopedics. He was honored with the Third Prize for Military Science & Technology Progress for elucidating the TIM3 signaling pathway in osteoarthritis during military training-related injuries. Additionally, he received the Third Award for Nanjing Science & Technology Progress for identifying the role of recombinant BMP-1 in periprosthetic osteolysis. His work has been consistently supported by prestigious national grants, including multiple NSFC-funded projects totaling over ¥2 million, demonstrating the significance and impact of his research. Beyond awards, his appointment to editorial boards of leading orthopedic and bioengineering journals highlights his global recognition in the field. Dr. Liu’s innovative surgical methods, such as restorative laminoplasty with H-shaped miniplates, have been acknowledged as transformative in spinal reconstruction. These accolades collectively recognize his outstanding contribution to orthopedic research, surgical innovation, and patient care.

📚 Top Noted Publications 

Dr. Liu’s publications span orthopedic biomechanics, inflammatory pathways, and regenerative medicine, widely cited in the global research community. Key works include:

🛠️ Biomechanical Stability of Miniplates in Restorative Laminoplasty

Title: Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study
Authors: Guoyin Liu, Weiqian Huang, Nannan Leng, Peng He, Xin Li, Muliang Lin, Zhonghua Lian, Yong Wang, Jianmin Chen, Weihua Cai
Journal: Bioengineering (Basel)
Year / Volume / Issue: 2024; 11(5):519
DOI: 10.3390/bioengineering11050519 PubMed+15MDPI+15ResearchGate+15
Highlights: Used a finite element model (L2–L4) to compare H‑shaped, L‑shaped, and two‑hole miniplates. The H‑shaped design showed superior stability, especially in axial rotation and flexion/extension PubMedMDPI.

Biomechanical Reconstruction of the Posterior Complex in Laminoplasty

Title: Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates
Authors: Jianmin Chen, Guoyin Liu, Tianyi Bao, Yuansheng Xu, Hu Luo, Yu Wu, Dawei Cai, Feng Qin, Jianning Zhao
Journal: BMC Musculoskeletal Disorders
Year / Volume / Article: 2023; 24(1):298
DOI: 10.1186/s12891-023-06380-3 PubMedOUCI
Highlights: Cadaveric 3D-printed L4 models under static/dynamic loading. H‑shaped miniplates outperformed L‑shaped and two-hole systems, preventing lamina collapse or plate breakage PubMedResearchGate.

Macrophage Apoptosis Pathways in Periprosthetic Osteolysis

Title: Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthetic osteolysis
Journal: APMIS
Year: 2017
Details: Demonstrates that wear particles at implant interfaces accelerate macrophage apoptosis via ER-stress and mitochondrial dysfunction, which exacerbates osteolysis PubMedPhysiology Journals.

Endoplasmic Reticulum Stress and Osteolysis

Title: Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis
Authors: Guoyin Liu, Naicheng Liu, Yuansheng Xu, Yunfan Ti, Jiangning Chen, Jianmin Chen, Junfeng Zhang, Jianning Zhao
Journal: Cell and Tissue Research
Year / Issue / Pages: 2016 Feb; 363(2):427–447
DOI: 10.1007/s00441-015-2205-9 PubMedSpringerLink
Highlights: Particle debris induces ER stress in macrophages, triggering IRE1α, GRP78/BiP, NF‑κB pathways, elevating pro-inflammatory cytokines (TNF‑α, IL‑1β, IL‑6). 4‑PBA effectively reduced ER-stress and osteolysis in murine models .

Conclusion

Dr. Guoyin Liu’s outstanding contributions to orthopedic research, innovative therapies, and patented medical devices make him a highly suitable candidate for the Best Researcher Award. His work bridges basic molecular research with clinical applications, significantly improving diagnosis, treatment, and rehabilitation of complex musculoskeletal disorders.

Seyed Mehrdad Mirsalami | Molecular Biology | Best Researcher Award

Dr. Seyed Mehrdad Mirsalami | Molecular Biology | Best Researcher Award 

Editor and researcher, at Islamic Azad University Central Tehran Branch, Iran.

Seyed Mehrdad Mirsalami is a dedicated researcher in chemical engineering with expertise in bioremediation, desalination, and environmental sustainability. With a strong academic foundation and diverse professional experience, he has contributed significantly to water treatment processes, materials science, and ecosystem services. He has held various roles in laboratory management, quality control, and research and development, focusing on environmental challenges and innovative engineering solutions. Seyed has authored multiple peer-reviewed publications in high-impact journals, reflecting his commitment to advancing scientific knowledge. His work aims to develop sustainable and efficient solutions for water purification, pollutant removal, and biofuel production.

Professional Profile

Scopus

ORCID

🎓 Education

Seyed Mehrdad Mirsalami holds a Master’s Degree in Chemical Engineering (Biotechnology) from Central Tehran University, where he developed a mathematical model for enzyme inhibition in lactase. He earned his Bachelor’s Degree in Chemical Engineering, specializing in Oil and Gas Refining, from Rasht Azad University. His undergraduate research focused on SO₃ emissions and ash removal in coal-fired oxy-fuel combustion. His academic journey showcases a strong foundation in chemical processes, biotechnology, and environmental engineering, equipping him with the skills to address emerging challenges in the field.

💼 Experience

Seyed has accumulated extensive experience in academia and industry. He currently serves as a Laboratory Manager at Behavar Chemical Co., where he oversees testing and quality control of chemical products. Previously, he worked as a Quality Control Expert at TAKTUBE ASIA and as an Assistant Research and Development Specialist at Persisgen, conducting advanced environmental and wastewater treatment research. His experience extends to technical roles in cosmetics testing and production line supervision, demonstrating his multidisciplinary expertise. Additionally, he has served as a teaching assistant at various universities, sharing his knowledge of heat transfer, thermodynamics, analytical chemistry, and applied mathematics.

🔬 Research Interests

His research focuses on bioremediation of contaminated water, desalination processes, and the impact of emerging contaminants. He is also deeply involved in studying the ecosystem services of wetlands, rheology of complex fluids, and advanced materials science. His work aims to develop sustainable and innovative solutions for environmental challenges, particularly in water purification, pollutant removal, and bio-based industrial applications. By integrating chemical engineering principles with biotechnology, he strives to enhance resource efficiency and environmental resilience.

🏆 Awards & Recognitions

Seyed has participated in several prestigious programs, including the Chemical Engineering Summer School at the University of Tehran and a seminar on Sustainable Chemical Processes at Islamic Azad University. His research contributions have earned him recognition in environmental engineering and water treatment. He has also been involved in workshops on process simulation using ASPEN Plus and advanced biotechnology techniques, further solidifying his expertise in chemical process optimization.

📚 Top Noted Publications

Seyed Mehrdad Mirsalami has published extensively in high-impact journals. Below are some of his key publications:

  • Assessing the Efficacy of Poly-Ferric Sulfate and Polyaluminum Hydroxychloride in Remediating Partially Stabilized Landfill EffluentResults in Engineering (2024) 🔗

  • Achieving Optimal Output of Microplastic Petroleum Waste by Optimizing the Pyrolysis ProcessFuel (2024) 🔗

  • Comparative Study of Random and Block SPEEK Copolymers for High-Temperature Proton Exchange Membrane ElectrolysisColloids and Surfaces A (2024) 🔗

  • Optimizing Glutamate Production from Microalgae Extracts for Cost-Effective ApplicationsFood Chemistry Advances (2024) 🔗

  • Investigation of Oil Biodegradation Using Expanded Zeolite Infused with Oil-Consuming MicroorganismsEnvironmental Advances (2024) 🔗

Conclusion

Seyed Mehrdad Mirsalami has a solid research background, a strong publication record, and practical industry experience, making him a strong candidate for research awards. However, obtaining a Ph.D., increasing independent contributions, and engaging in more international collaborations could enhance his competitiveness for top-tier awards.