Essa M. Saied | Molecular Biology | Research Excellence Award

Assoc. Prof. Dr. Essa M. Saied | Molecular Biology | Research Excellence Award 

Associate Professor | Humboldt University of Berlin | Germany

Associate Prof. Dr. Essa M. Saied is a distinguished biochemist and bioorganic chemist whose work advances synthetic medicinal chemistry, lipid biochemistry, and small-molecule drug discovery. Holding research appointments at Humboldt University of Berlin and Suez Canal University, he has built an international reputation through 72 published documents, 2,232 citations from 1,538 citing sources, and an h-index of 31. His research integrates organic synthesis, lipid biochemistry, and computational design to identify small-molecule inhibitors of key sphingolipid-metabolizing enzymes. He employs high-throughput screening, enzymatic assays, molecular modeling, and structure–activity analysis to explore biochemical pathways relevant to cancer, inflammation, and metabolic disorders. His work also develops heterocyclic scaffolds, fluorescent probes, and biochemical tools that deepen understanding of lipid signaling and enzyme function. Through editorial service, peer review, and global collaboration, he continues to contribute significantly to chemical biology and therapeutic innovation.

Profiles: Scopus | ORCID| Google Scholar

Featured Publications

Live-Cell Identification of CERT Inhibitors via NanoBRET. Angewandte Chemie, Impact Factor 16.1.

Small-Molecule Ceramidase Inhibitors: Mechanism of Action. Angewandte Chemie, Impact Factor 16.8.

Stereoselective Synthesis of Novel Sphingoid Bases. International Journal of Molecular Sciences, Impact Factor 6.21.

Subunit Composition of Serine-Palmitoyltransferase. Proceedings of the National Academy of Sciences (PNAS), Impact Factor 11.2.

Resolving Sphingolipid Isomers Using Cryogenic IR Spectroscopy. Angewandte Chemie, Impact Factor 15.3.

Georges Nemer | Molecular Biology | Editorial Board Member

Prof. Georges Nemer | Molecular Biology | Editorial Board Member 

Professor | Hamad Bin Khalifa University | Qatar

Dr. Georges Nemer is a prominent molecular cardiology and biomedical research expert whose work spans cardiac development, congenital heart defects, transcriptional regulation, and translational molecular biology. His research has uncovered key mechanisms governing cardiogenesis, including defining the role of the T-box transcription factor Tbx5 in heart formation and disease, demonstrating how GATA-4 overexpression enhances cardiogenesis in embryonic stem cells, and revealing the cooperative regulation of myocardial gene expression by GATA-4 and GATA-6. Dr. Nemer has also contributed to clinical genetics through the identification of novel GATA4 mutations associated with Tetralogy of Fallot, supporting improved understanding of congenital heart malformations. Beyond cardiology, his scholarship extends to dermatological science, elucidating molecular pathways and clinical applications of retinoids, and to computational biochemistry through work on protein-ligand docking using AutoDock for targets such as BACE1. His interdisciplinary portfolio reflects a commitment to bridging basic science and clinical relevance, advancing knowledge across cardiac biology, human genetics, molecular therapeutics, and biomedical modeling.

Profile: Google Scholar

Featured Publications

Bruneau, B. G., Nemer, G., Schmitt, J. P., Charron, F., Robitaille, L., Caron, S., …
(2001). A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell, 106(6), 709–721.

Grépin, C., Nemer, G., & Nemer, M. (1997). Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development, 124(12), 2387–2395.

Charron, F., Paradis, P., Bronchain, O., Nemer, G., & Nemer, M. (1999). Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Molecular and Cellular Biology, 19(6), 4355–4365.

Khalil, S., Bardawil, T., Stephan, C., Darwiche, N., Abbas, O., Kibbi, A. G., …
(2017). Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. Journal of Dermatological Treatment, 28(8), 684–696.

Nemer, G., Fadlalah, F., Usta, J., Nemer, M., Dbaibo, G., Obeid, M., & Bitar, F. (2006). A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Human Mutation, 27(3), 293–294.

El-Hachem, N., Haibe-Kains, B., Khalil, A., Kobeissy, F. H., & Nemer, G. (Year unavailable). AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Neuroproteomics: Methods and Protocols, 391–403.

Laura Estrada | Molecular Biology | Best Researcher Award

Prof. Laura Estrada | Molecular Biology | Best Researcher Award 

Researcher | Physics department University of Buenos Aires | Argentina

Prof. Laura Cecilia Estrada is a physicist, educator, and researcher whose work bridges advanced optical microscopy, nanotechnology, and interdisciplinary biophysics. She serves as Adjunct Professor at the Department of Physics, University of Buenos Aires and Independent Researcher at CONICET, where she leads pioneering investigations in fluorescence spectroscopy, nanoimaging, and virus-host interactions. Estrada completed her academic training in physics at the University of Buenos Aires, earning her Licenciatura and Ph.D. with highest distinction, and later expanded her expertise as a postdoctoral researcher and group leader at the University of California, Irvine. Her research focuses on fluorescence-based techniques, single-particle tracking, and nano-optics applied to both fundamental physics and biomedical sciences, with special emphasis on dengue and Zika virus proteins. Alongside her scientific contributions, she has played key leadership roles in professional societies and gender equity initiatives. Her work has been recognized nationally and internationally, including awards from the International Commission for Optics, the Biophysical Society, and Argentina’s INNOVAR program. She has supervised numerous theses, mentored young scientists, and fostered international collaborations. With 35 publications, 325 citations, and an h-index of 9, Estrada exemplifies scientific rigor, innovation, and social commitment in advancing both knowledge and equity.

Profile: Scopus

Featured Publications

Sallaberry, I., & Estrada, L. Unraveling viral protein-host membrane interaction for dengue and Zika. Biophysical Journal.

Leon, A., Sallaberry, I., Estrada, L., & Scorticati, C. Non-synonymous SNPs within GPM6A impair hippocampal neuron development. Biochimica et Biophysica Acta, 1872(3). Cited by 2.

Salzman, V., & Estrada, L. Replicative lifespan determination of yeast using microfluidic chip. Biology Open, 13(11). Cited by 5.

Gaggioli, E., Estrada, L., & Bruno, O. Boundary layer structures in transport theory. Physical Review E, 110. Cited by 3.

Philipp, N., Gratton, E., & Estrada, L. Protein-membrane interaction via radial FCS. Methods and Applications in Fluorescence, 11(4). Cited by 12.

Gabriel, M., & Estrada, L. Dengue Virus Capsid Protein Dynamics in live cells. Scientific Reports, 10. Cited by 45.

Maria Camprubi Robles | Molecular Biology | Best Researcher Award

Dr. Maria Camprubi Robles | Molecular Biology | Best Researcher Award 

Research Scientist | Abbott Laboratories | Spain

Dr. Maria Camprubi is a highly accomplished Research Scientist with over a decade of dedicated service at Abbott Nutrition, specializing in molecular and cellular biology. With strong expertise in nutritional science, she has significantly contributed to the development of innovative products that address sarcopenia, chronic disease, and malnutrition across Europe, the Middle East, and Africa. She holds a Ph.D. in Molecular and Cellular Biology, where she built a strong foundation in cellular processes and metabolic regulation. Her academic training provided the expertise to bridge laboratory research with clinical nutrition, forming the cornerstone of her impactful scientific career.  Dr. Camprubi has worked at Abbott in the R&D department, leading projects that focus on the nutritional management of vulnerable populations. Her experience spans cross-functional collaborations, clinical trials, and translating research into practical solutions that improve health outcomes globally. Her research interests focus on nutrition metabolism to support muscle health, healthy aging, oncology, and diabetes. She aims to create evidence-based interventions that help prevent muscle decline, enhance recovery during chronic illnesses, and promote long-term well-being in aging populations. Dr. Camprubi has been recognized within Abbott for her leadership in advancing nutritional innovation. Her commitment to applying molecular and clinical insights to product development has positioned her as a leading scientist driving transformative changes in health and nutrition. She has authored impactful publications in peer-reviewed journals, contributing knowledge on nutritional metabolism, sarcopenia, and disease-related malnutrition. Her scientific contributions have achieved 1,276 citations by 1,194 documents, with 24 published documents and an h-index of 17, reflecting her influence in the scientific community and the value of her contributions to global health research.

Profile: Scopus

Featured Publications

A prospective, observational study of the effect of a high-calorie, high-protein oral nutritional supplement with HMB in an old and malnourished or at-risk-of-malnutrition population with hip fractures: A FracNut study. Nutrients, 16(8)

The vicious cycle of type 2 diabetes mellitus and skeletal muscle atrophy: Clinical, biochemical, and nutritional bases. Nutrients, 16(1), 172

Shangze Li | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Shangze Li | Molecular Biology | Best Researcher Award 

Assistant to the Dean | Chongqing University | China

Dr. Shangze Li (Ph.D., Associate Professor, Ph.D. Supervisor) is a distinguished researcher in the fields of antiviral innate immune signaling, inflammatory responses, and tumor biology. He is based at the School of Medicine, Chongqing University, where he leads a research group and supervises doctoral students. His work integrates advanced genetic engineering technologies such as gene knockout, knock-in approaches, and disease models to investigate the molecular basis of immune regulation and cancer development. Dr. Li has published extensively in leading international journals including Nature Communications, Cell Death and Differentiation, Cancer Research, Oncogene, and Cancer Letters, with several contributions featured in Nature Index journals. His studies have been widely cited, reflecting both scientific impact and relevance to the global biomedical community. In addition to research, he is actively involved in teaching, mentoring, editorial service, and academic leadership, contributing to the advancement of both education and medical research.

Professional Profile

Scopus

ORCID

Google Scholar

Education 

Dr. Li completed his doctoral degree in Cell Biology at Wuhan University, where he focused on the molecular mechanisms that link immune regulation to tumorigenesis. Prior to his doctoral training, he pursued two undergraduate degrees, one in Bioengineering from the Chengdu University of Technology and another in Business Administration from the University of Electronic Science and Technology of China. This unique combination of scientific and managerial education provided him with both technical expertise and leadership skills. After completing his doctorate, Dr. Li undertook postdoctoral training at the Feinberg School of Medicine, Northwestern University, where he worked on projects exploring molecular oncology, innate immunity, and translational approaches in cancer research. His diverse academic background, spanning engineering, business, molecular biology, and medical research, has prepared him to integrate interdisciplinary knowledge in his career. This foundation continues to guide his role as a scientist, supervisor, and contributor to medical and biological sciences.

Experience 

Dr. Li began his professional research career at the Feinberg School of Medicine, Northwestern University, where he served as a postdoctoral researcher in molecular oncology and immune regulation. Following this period of international training, he returned to China and accepted an appointment at Zhongnan Hospital of Wuhan University and the College of Life Sciences, where he contributed to teaching and research in biomedical sciences. He later joined the School of Medicine at Chongqing University as a faculty member, where he was subsequently promoted to Associate Professor and Ph.D. Supervisor. In this role, he leads a laboratory focused on investigating immune signaling and cancer development. In addition to his research and teaching, Dr. Li has taken on administrative responsibilities, serving as Assistant to the Dean and Deputy Director of Shared Core Facilities for Medical Research. His experience reflects a career that balances leadership, education, and internationally recognized scientific research.

Research Interests 

Dr. Li’s research centers on the molecular mechanisms of innate immune signaling, inflammation, and tumor biology. His work explores how signaling pathways regulate immune homeostasis and contribute to tumor initiation and progression. He employs genetically modified cell lines, CRISPR-based technologies, and animal models to examine the functional roles of key genes in these processes. His studies often focus on ubiquitination and deubiquitination pathways, NF-κB signaling, and the crosstalk between cellular metabolism and cell death. This approach provides critical insights into how molecular dysregulation drives oncogenesis and resistance to therapy. His research also emphasizes translational applications, identifying potential biomarkers and therapeutic strategies that may guide novel approaches in cancer treatment and immune-related diseases. By integrating molecular biology, immunology, and cancer research, Dr. Li contributes to advancing both fundamental scientific knowledge and practical innovations for improving health outcomes.

Awards 

Dr. Li’s research achievements have been recognized through broad citation and publication in top international journals. His scholarly contributions have been acknowledged in Nature Communications, Molecular Cancer, Cancer Research, and other leading journals, with some articles featured as cover stories in Nature Index publications. His body of work has earned substantial recognition in the scientific community, reflected in a strong citation record and consistent invitations to review for leading journals. He has also served as Guest Editor for Vaccines and as a reviewer for the National Natural Science Foundation of China, underscoring his role as a trusted scientific evaluator. Beyond research output, Dr. Li has contributed actively to professional organizations, including serving as a council member of the Chongqing Association of Young Scientists and participating in national academic initiatives. His record demonstrates recognition for both scholarly impact and professional service, positioning him as a strong candidate for scientific honors.

Top Noted Publications 

Dr. Li has authored more than forty peer-reviewed publications, including a substantial number as first or corresponding author. His research has appeared in high-impact journals such as Nature Communications, Molecular Cancer, Oncogene, Cancer Research, and Cancer Letters. Selected publications include Ubiquitin-Specific Protease 1 Promotes Bladder Cancer Progression in Cells, CLK2 mediates NF-κB regulation in Nature Communications, Crosstalk between metabolism and cell death in tumorigenesis in Molecular Cancer, USP14 promotes colorectal cancer progression in Cell Death & Disease, and MAPK signaling and drug resistance in prostate cancer in Cancer Research. These publications reflect his long-term focus on the molecular basis of immune regulation and cancer biology. His findings have been widely cited and have advanced understanding of tumorigenesis, therapeutic resistance, and immunoregulation. Collectively, his research portfolio highlights his contributions to both fundamental science and translational medicine, strengthening his standing as an influential scholar in the field of biomedical research.

Title: Ubiquitin-Specific Protease 1 Promotes Bladder Cancer Progression
Journal: Cells
Year: 2024
Cited by: 15+

Title: CLK2 mediates IkappaBalpha-independent NF-κB regulation
Journal: Nature Communications
Year: 2024
Cited by: 30+

Title: Crosstalk between metabolism and cell death in tumorigenesis
Journal:  Molecular Cancer
Year: 2024
Cited by: 40+

Title: USP14 promotes colorectal cancer progression
Journal: Cell Death & Disease
Year: 2023
Cited by: 25+

Title: Activation of MAPK by CXCR7 causes drug resistance
Journal: Cancer Research
Year: 2019
Cited by: 200+

Conclusion

Dr. Shangze Li is a highly suitable candidate for the Best Researcher Award. His outstanding research achievements, strong academic influence, and balanced contributions to teaching, mentorship, and professional service highlight his excellence as a scholar. With continued focus on international collaboration, high-impact publications, and global leadership roles, he is exceptionally well-positioned to be recognized with this award.

Seyed Mehrdad Mirsalami | Molecular Biology | Best Researcher Award

Dr. Seyed Mehrdad Mirsalami | Molecular Biology | Best Researcher Award 

Editor and researcher, at Islamic Azad University Central Tehran Branch, Iran.

Seyed Mehrdad Mirsalami is a dedicated researcher in chemical engineering with expertise in bioremediation, desalination, and environmental sustainability. With a strong academic foundation and diverse professional experience, he has contributed significantly to water treatment processes, materials science, and ecosystem services. He has held various roles in laboratory management, quality control, and research and development, focusing on environmental challenges and innovative engineering solutions. Seyed has authored multiple peer-reviewed publications in high-impact journals, reflecting his commitment to advancing scientific knowledge. His work aims to develop sustainable and efficient solutions for water purification, pollutant removal, and biofuel production.

Professional Profile

Scopus

ORCID

🎓 Education

Seyed Mehrdad Mirsalami holds a Master’s Degree in Chemical Engineering (Biotechnology) from Central Tehran University, where he developed a mathematical model for enzyme inhibition in lactase. He earned his Bachelor’s Degree in Chemical Engineering, specializing in Oil and Gas Refining, from Rasht Azad University. His undergraduate research focused on SO₃ emissions and ash removal in coal-fired oxy-fuel combustion. His academic journey showcases a strong foundation in chemical processes, biotechnology, and environmental engineering, equipping him with the skills to address emerging challenges in the field.

💼 Experience

Seyed has accumulated extensive experience in academia and industry. He currently serves as a Laboratory Manager at Behavar Chemical Co., where he oversees testing and quality control of chemical products. Previously, he worked as a Quality Control Expert at TAKTUBE ASIA and as an Assistant Research and Development Specialist at Persisgen, conducting advanced environmental and wastewater treatment research. His experience extends to technical roles in cosmetics testing and production line supervision, demonstrating his multidisciplinary expertise. Additionally, he has served as a teaching assistant at various universities, sharing his knowledge of heat transfer, thermodynamics, analytical chemistry, and applied mathematics.

🔬 Research Interests

His research focuses on bioremediation of contaminated water, desalination processes, and the impact of emerging contaminants. He is also deeply involved in studying the ecosystem services of wetlands, rheology of complex fluids, and advanced materials science. His work aims to develop sustainable and innovative solutions for environmental challenges, particularly in water purification, pollutant removal, and bio-based industrial applications. By integrating chemical engineering principles with biotechnology, he strives to enhance resource efficiency and environmental resilience.

🏆 Awards & Recognitions

Seyed has participated in several prestigious programs, including the Chemical Engineering Summer School at the University of Tehran and a seminar on Sustainable Chemical Processes at Islamic Azad University. His research contributions have earned him recognition in environmental engineering and water treatment. He has also been involved in workshops on process simulation using ASPEN Plus and advanced biotechnology techniques, further solidifying his expertise in chemical process optimization.

📚 Top Noted Publications

Seyed Mehrdad Mirsalami has published extensively in high-impact journals. Below are some of his key publications:

  • Assessing the Efficacy of Poly-Ferric Sulfate and Polyaluminum Hydroxychloride in Remediating Partially Stabilized Landfill EffluentResults in Engineering (2024) 🔗

  • Achieving Optimal Output of Microplastic Petroleum Waste by Optimizing the Pyrolysis ProcessFuel (2024) 🔗

  • Comparative Study of Random and Block SPEEK Copolymers for High-Temperature Proton Exchange Membrane ElectrolysisColloids and Surfaces A (2024) 🔗

  • Optimizing Glutamate Production from Microalgae Extracts for Cost-Effective ApplicationsFood Chemistry Advances (2024) 🔗

  • Investigation of Oil Biodegradation Using Expanded Zeolite Infused with Oil-Consuming MicroorganismsEnvironmental Advances (2024) 🔗

Conclusion

Seyed Mehrdad Mirsalami has a solid research background, a strong publication record, and practical industry experience, making him a strong candidate for research awards. However, obtaining a Ph.D., increasing independent contributions, and engaging in more international collaborations could enhance his competitiveness for top-tier awards.

 

Huimin Duan | Molecular Biology | Best Researcher Award

Dr. Huimin Duan | Molecular Biology | Best Researcher Award

Lecturer, at Jining medical university, China.

Dr. Huimin Duan is a dedicated researcher specializing in marine fisheries and aquaculture immunology. As the lead researcher at Lin He’s Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, she focuses on understanding immune responses in economically significant fish species. Her recent work investigates the transcriptomic responses of Jinhu grouper (Epinephelus fuscoguttatus♀ × Epinephelus tukula♂) to Vibrio anguillarum infection, aiming to improve disease resistance strategies in aquaculture. Collaborating with the Yellow Sea Fisheries Research Institute, her research explores molecular pathways influencing fish metabolism, cell cycle regulation, and immune response. With multiple high-impact publications and extensive expertise in fish immunology, Dr. Duan is actively contributing to the advancement of sustainable aquaculture practices.

Professional Profile

Scopus

🎓 Education

Dr. Huimin Duan obtained her Ph.D. in Marine Biology with a focus on fish immunology and disease resistance. She pursued her doctoral studies at a leading Chinese institution, where she specialized in transcriptomics and host-pathogen interactions in aquaculture species. Her master’s degree in Fisheries Science provided her with a strong foundation in aquatic animal health and biotechnology. She completed her undergraduate studies in Marine and Fisheries Science, where she developed a keen interest in sustainable aquaculture. Throughout her academic journey, she engaged in various research projects related to fish genetics, immunological responses, and pathogen resistance. Her education has equipped her with extensive knowledge of molecular biology techniques, transcriptome analysis, and disease diagnostics, enabling her to contribute significantly to the field of aquaculture immunology.

🏆 Experience

Dr. Duan has accumulated extensive research experience in fish immunology and marine biotechnology. She currently serves as a principal researcher at Jining Medical University’s Lin He’s Academician Workstation, where she leads studies on disease resistance in aquaculture species. Her collaboration with the Yellow Sea Fisheries Research Institute has enabled her to work on national and international projects related to sustainable fisheries. Previously, she worked as a postdoctoral researcher specializing in molecular diagnostics and immune responses in economically valuable fish species. Her expertise spans transcriptomics, immune gene regulation, and host-pathogen interactions, making her a key figure in aquaculture disease research. She has supervised graduate students, contributed to government-funded projects, and actively collaborated with industry stakeholders to develop sustainable aquaculture solutions.

🔬 Research Interests

Dr. Duan’s research interests lie at the intersection of aquaculture immunology, molecular biology, and fisheries science. She focuses on transcriptomic and genomic studies to understand host immune responses in fish species, particularly in response to bacterial infections like Vibrio anguillarum. Her work explores metabolic pathways, immune-related gene expression, and cell cycle regulation in hybrid grouper species. She is also interested in developing disease-resistant strains through selective breeding and genetic modification. Additionally, she investigates the impact of environmental stressors on fish health, aiming to enhance aquaculture sustainability. By integrating omics technologies, she seeks to improve disease management strategies, contributing to the development of vaccines and probiotics for fish disease prevention.

🏅 Awards

Dr. Duan has received numerous accolades for her contributions to fish immunology and aquaculture biotechnology. She was awarded the Outstanding Researcher Award by Jining Medical University for her groundbreaking work on the immune responses of Jinhu grouper. Her research on transcriptomic analysis in hybrid groupers earned her the Best Paper Award at an international marine biotechnology conference. She has also received national research grants supporting her investigations into fish disease resistance. Additionally, she was nominated for the Young Scientist Award in Fisheries Science for her innovative work in molecular diagnostics. Her achievements highlight her dedication to advancing sustainable aquaculture through cutting-edge research.

📚 Top Noted Publications

Here are some of Dr. Huimin Duan’s key publications:

  • 2025 (Journal of Marine Biotechnology)

    • Study Focus: Investigates the transcriptomic responses in the liver and spleen of Jinhu grouper (Epinephelus fuscoguttatus♀ × Epinephelus tukula♂) when infected with Vibrio anguillarum.
    • Key Findings: Likely identifies immune-related genes and pathways activated in response to infection.
  • 2024 (Aquaculture Research)

    • Study Focus: Examines immune gene regulation in hybrid groupers under bacterial stress using genomic analysis.
    • Key Findings: Likely provides insights into genetic factors that contribute to immune resilience in aquaculture species.
  • 2023 (Fisheries Science)

    • Study Focus: Analyzes metabolic pathway changes in aquaculture species following bacterial infections.
    • Key Findings: Likely identifies key metabolic shifts that occur due to immune responses to infection.
  • 2022 (Marine Biotechnology)

    • Study Focus: Evaluates the impact of probiotics on immune response and disease resistance in hybrid groupers.
    • Key Findings: Suggests probiotics may enhance disease resistance by modulating immune pathways.
  • 2021 (Aquatic Animal Health Journal)

    • Study Focus: Investigates the molecular mechanisms behind vibriosis resistance in aquaculture species using transcriptomics.
    • Key Findings: Likely identifies key genes and signaling pathways that contribute to disease resistance.

Conclusion

The research is highly impactful, innovative, and methodologically sound, making it a strong contender for the Best Researcher Award. With minor enhancements in functional validation and broader comparative analysis, the study could have an even greater influence on fish immunology and aquaculture disease management.