Laura Estrada | Molecular Biology | Best Researcher Award

Prof. Laura Estrada | Molecular Biology | Best Researcher Award 

Researcher | Physics department University of Buenos Aires | Argentina

Prof. Laura Cecilia Estrada is a physicist, educator, and researcher whose work bridges advanced optical microscopy, nanotechnology, and interdisciplinary biophysics. She serves as Adjunct Professor at the Department of Physics, University of Buenos Aires and Independent Researcher at CONICET, where she leads pioneering investigations in fluorescence spectroscopy, nanoimaging, and virus-host interactions. Estrada completed her academic training in physics at the University of Buenos Aires, earning her Licenciatura and Ph.D. with highest distinction, and later expanded her expertise as a postdoctoral researcher and group leader at the University of California, Irvine. Her research focuses on fluorescence-based techniques, single-particle tracking, and nano-optics applied to both fundamental physics and biomedical sciences, with special emphasis on dengue and Zika virus proteins. Alongside her scientific contributions, she has played key leadership roles in professional societies and gender equity initiatives. Her work has been recognized nationally and internationally, including awards from the International Commission for Optics, the Biophysical Society, and Argentina’s INNOVAR program. She has supervised numerous theses, mentored young scientists, and fostered international collaborations. With 35 publications, 325 citations, and an h-index of 9, Estrada exemplifies scientific rigor, innovation, and social commitment in advancing both knowledge and equity.

Profile: Scopus

Featured Publications

Sallaberry, I., & Estrada, L. Unraveling viral protein-host membrane interaction for dengue and Zika. Biophysical Journal.

Leon, A., Sallaberry, I., Estrada, L., & Scorticati, C. Non-synonymous SNPs within GPM6A impair hippocampal neuron development. Biochimica et Biophysica Acta, 1872(3). Cited by 2.

Salzman, V., & Estrada, L. Replicative lifespan determination of yeast using microfluidic chip. Biology Open, 13(11). Cited by 5.

Gaggioli, E., Estrada, L., & Bruno, O. Boundary layer structures in transport theory. Physical Review E, 110. Cited by 3.

Philipp, N., Gratton, E., & Estrada, L. Protein-membrane interaction via radial FCS. Methods and Applications in Fluorescence, 11(4). Cited by 12.

Gabriel, M., & Estrada, L. Dengue Virus Capsid Protein Dynamics in live cells. Scientific Reports, 10. Cited by 45.

Ingrid Tatiana Erazo | Molecular Biology | Molecular Biology Contribution Award

Dr. Ingrid Tatiana Erazo | Molecular Biology | Molecular Biology Contribution Award 

Scientific Research Lead | Memorial Sloan Kettering Cancer Center | United States

Dr. Ingrid Tatiana Erazo is a distinguished cancer researcher and Scientific Research Lead at Memorial Sloan Kettering Cancer Center (MSKCC) with extensive experience in translational oncology. She earned her PhD Summa Cum Laude in Biochemistry and Molecular Biology from the Autonomous University of Barcelona, where she pioneered research on the ERK5 signaling pathway. Her early postdoctoral work led to the discovery of the mechanism of action for ABTL-0812, an autophagy-inducing anticancer agent now in Phase III clinical trials. Over the past decade at MSKCC, she has advanced understanding of PRMT5 inhibition, therapeutic resistance, and biomarker development for precision oncology. She currently leads initiatives integrating liquid biopsy diagnostics for early cancer detection and is spearheading global health equity programs, including the creation of Brazil’s first national referral network for cancer clinical trials. Her work bridges molecular discoveries with clinical application, driving advancements in both targeted therapies and diagnostic tools.

Professional Profile

Scopus

ORCID

Google Scholar

Education

Dr. Erazo earned her PhD in Biochemistry and Molecular Biology from the Autonomous University of Barcelona, graduating Summa Cum Laude. Her doctoral research focused on dissecting the ERK5 signaling pathway and its role in cancer cell proliferation and survival. She used Tandem Affinity Purification to map ERK5’s interactome, uncovering novel noncanonical mechanisms and post-translational modifications such as SUMOylation that opened new therapeutic opportunities. Collaborating with Dana-Farber Cancer Institute at Harvard, she co-developed potent and selective ERK5 inhibitors, providing valuable pharmacological tools for cancer research. Her academic training combined molecular biology with translational oncology, giving her a unique foundation to move seamlessly from bench research to clinical applications. She also pursued advanced training in biomarker discovery and molecular diagnostics, enabling her to contribute to projects that merge fundamental discoveries with practical solutions for cancer detection, prognosis, and treatment optimization in a variety of clinical contexts.

Experience

Dr. Erazo’s professional career spans more than 20 completed research projects and leadership in multiple ongoing studies, covering molecular oncology, biomarker discovery, and therapeutic resistance. At MSKCC, she elucidated the mechanism of action of PRMT5 inhibitors and identified MUSASHI-2 as a driver of drug resistance in hematologic malignancies, leading to innovative combination therapy strategies. She developed liquid biopsy-based diagnostics for aggressive prostate cancers and integrated proteomic biomarkers into clinical research pipelines. In her earlier postdoctoral role at Ability Pharmaceuticals, she was instrumental in advancing ABTL-0812 to clinical trials by defining its mechanism and identifying relevant biomarkers. She has partnered with global pharmaceutical and biotech companies, including GlaxoSmithKline, Biodesix Inc., and Guardant Health. Her work also extends to global health initiatives, such as establishing Brazil’s first national referral network for cancer clinical trials with molecular profiling, aiming to address disparities in cancer care and ensure equitable access to precision oncology.

Research Interest

Dr. Erazo’s research focuses on cancer biology, mechanisms of drug resistance, biomarker discovery, and precision oncology. She has a particular interest in hematological malignancies and aggressive solid tumors where therapeutic resistance significantly impacts patient outcomes. Her work applies genome-wide CRISPR synthetic lethal screening, proteomics, and high-throughput drug screening to identify cancer vulnerabilities and inform new treatment strategies. She is advancing diagnostic methods through liquid biopsy technology, enabling early and non-invasive tumor detection and monitoring, with a focus on neuroendocrine prostate cancer. Dr. Erazo also addresses global health inequities by developing clinical trial networks in underrepresented regions and incorporating genetic ancestry into study designs to improve population-specific therapeutic approaches. By combining basic molecular research with translational and clinical applications, she aims to ensure that future cancer therapies and diagnostics are effective across diverse populations and accessible beyond high-resource healthcare settings.

Awards

Dr. Erazo’s scientific achievements have positioned her as a leader in translational cancer research and a nominee for the Molecular Biology Contribution Award. She is recognized for her groundbreaking work on ERK5 signaling, the clinical biomarker development for ABTL-0812, and the identification of MUSASHI-2 as a therapeutic resistance driver. Her contributions to liquid biopsy-based proteomic biomarkers for detecting lineage transformation in prostate cancer have advanced early diagnostic capabilities in precision oncology. She has also been a driving force behind the establishment of Brazil’s first national clinical trial referral network, demonstrating a strong commitment to global health equity. Her work, cited extensively in scientific literature, reflects both scientific rigor and real-world clinical impact. These accomplishments highlight her role as both a laboratory innovator and a global health strategist, whose research has shaped cancer treatment strategies and advanced diagnostic development on an international scale.

Top Noted Publications

Dr. Erazo has authored over 20 peer-reviewed articles in high-impact journals, including Annals of Oncology, Nature Communications, Autophagy, and Clinical Cancer Research. Her research spans mechanistic cancer biology, drug development, and biomarker-driven clinical applications. She has contributed to significant discoveries such as mapping the ERK5 interactome, elucidating the mechanism of action for ABTL-0812, and identifying resistance biomarkers for hematological malignancies. Her publications often emerge from collaborative projects that integrate molecular biology, pharmacology, and clinical trial data, reflecting her multidisciplinary approach to advancing oncology research. The high citation count of her work underscores its influence and the adoption of her findings by researchers and clinicians worldwide. Her studies have informed clinical trial design, therapeutic development, and diagnostic tool implementation, bridging the gap between basic science and patient-centered outcomes in cancer care.

Selected Publications (Single-Line Format)

Title: Erazo T, et al. The new antitumor drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels
Journal: Nature Communications
Cited by 312

Title: Erazo T, et al. Inhibition of PRMT5 in lymphomas overcomes therapeutic resistance via MUSASHI-2 modulation
Journal: Clinical Cancer Research
Cited by 145

Title: Erazo T, et al. ERK5 kinase activity-independent functions in cancer: implications for drug development
Journal: Autophagy
Cited by 110

Title: Erazo T, et al. Blood-based proteomic biomarkers for early detection of lineage plasticity in prostate cancer
Journal: Annals of Oncology
Cited by 35

Title: Erazo T, et al. High-throughput screening of FDA-approved drugs for novel therapeutic combinations in lymphoma
Journal: Molecular Oncology
Cited by 28

Conclusion

Dr. Ingrid Tatiana Erazo’s pioneering research, translational breakthroughs, and commitment to equitable precision oncology position her as an outstanding candidate for the Research for Molecular Biology Contribution Award. Her work exemplifies how rigorous molecular biology can directly shape novel therapeutics, diagnostics, and healthcare systems globally. Awarding her would recognize not only her individual achievements but also her vision for transforming cancer care through innovation and inclusivity.

 

jinghui xie | Molecular Biology | Best Researcher Award

Mr. jinghui xie | Molecular Biology | Best Researcher Award 

Associate professor, at xinjiang medical university, China.

Dr. Jinghui Xie is an accomplished researcher and Associate Professor in the Department of Biochemistry and Molecular Biology at Xinjiang Medical University.  He holds a Doctor of Science (Ph.D.) and Master of Science from Nankai University, and a Bachelor of Science from Shihezi University. His research focuses on the pathogenesis and treatment of diabetic microvascular lesions, with a strong emphasis on stem cell therapy, tissue engineering, and vascular organoid modeling.  Dr. Xie has been a recipient of the prestigious “Tianchi Talents Young Doctoral Program” of the Xinjiang Uygur Autonomous Region and has successfully led several major regional and national scientific research projects. 🔬 With 6 SCI-indexed papers in top-tier international journals like Journal of Materials Chemistry B and ACS Biomaterials Science & Engineering, along with 2 impactful Chinese publications, he is making significant contributions to translational medicine. His work bridges the gap between biomaterials, regenerative medicine, and clinical applications for diabetic complications.

Professional Profile

Google Scholar

🎓 Education

Dr. Xie’s academic journey reflects a progressive pursuit of excellence in biomedical science. 📖 He earned his Bachelor of Science from Shihezi University, laying the foundation in biochemistry and molecular biology. He then pursued Master of Science at Nankai University, where he honed his expertise in biomaterials and regenerative medicine. 🧪 His scholarly curiosity and dedication to advancing diabetic microvascular disease treatment led him to achieve a Doctor of Science (Ph.D.) in Biochemistry and Molecular Biology at Nankai University. During his Ph.D., he focused on vascular tissue engineering and stem cell-based therapies, resulting in several high-impact publications and innovative methodologies. 🎯 Throughout his education, he gained multidisciplinary knowledge combining biomedical engineering, molecular biology, and clinical research, equipping him with a solid background for cutting-edge research. 🎓💡

💼 Experience

Dr. Xie currently serves as an Associate Professor at the Department of Biochemistry and Molecular Biology, Xinjiang Medical University, where he mentors young researchers and leads multiple interdisciplinary projects. 👨‍🏫 He is the Principal Investigator (PI) of major funded studies, including the Natural Science Foundation Youth Project of the Xinjiang Uygur Autonomous Region and the Tianchi Talents Young Doctoral Program. 🏗️ His ongoing research includes mechanistic studies of engineered human mesenchymal stem cells for diabetic microvascular disease and construction of vascular organoid models. He has also contributed as a key participant in several National Natural Science Foundation of China (NSFC) projects on bioresponsive hydrogels, liver organoids, and neurovascular tissue engineering. 🔬 Beyond research, Dr. Xie actively contributes to academic development through teaching, curriculum improvement, and editorial roles in medical education journals. 🏅

🔬 Research Interests

Dr. Xie’s research is deeply rooted in regenerative medicine, biomaterials, and vascular biology. His primary focus is on the pathogenesis and treatment of diabetic microvascular lesions, exploring how engineered human mesenchymal stem cells (hMSCs) and biofunctionalized hydrogels can repair damaged vasculature. 💉 He is also advancing the construction of organoid models, such as vascular organoids, to study endothelial-pericyte interactions and mimic pathological conditions. 🌱 His work integrates stem cell therapy, bioresponsive biomaterials, and tissue engineering scaffolds to develop novel therapeutic approaches for diabetic complications, cardiovascular diseases, and tissue regeneration. He also explores VE-cadherin and N-cadherin functionalized matrices to promote angiogenesis and endothelial differentiation. 🧪 His long-term goal is to translate biomaterial-based therapies into clinical applications, improving the quality of life for diabetic patients. 🌟

🏆 Awards & Honors

Dr. Xie is the proud recipient of the Tianchi Talents Young Doctoral Program Award, a prestigious recognition by the Xinjiang Uygur Autonomous Region, which supports outstanding young researchers with innovative medical research projects. 🏅 He has also secured multiple competitive grants, including the Natural Science Foundation of the Autonomous Region Youth Project and funding from the Central Asian High Incidence Causes and Prevention State Key Laboratory. 💡 His impactful research has been acknowledged in top-tier SCI journals, leading to citations and collaborations within the international scientific community. 🌍 Furthermore, his invention patents in biomaterial functionalization and 3D cell culture systems demonstrate his contribution to translational research and medical innovation. 🚀

📚 Top Noted Publications 

Dr. Xie has authored 6 SCI-indexed papers in internationally recognized journals, such as Journal of Materials Chemistry B and ACS Biomaterials Science & Engineering, and 2 additional Chinese-language articles. His publications span topics including hydrogel-based tissue engineering, endothelial differentiation of hMSCs, and vascular organoid modeling. 📖 His work on VE-cadherin functionalized matrices has been widely cited in studies on angiogenesis and regenerative medicine. ✨ Additionally, he holds 3 invention patents, showcasing novel biomaterial-based methods for vascular tissue regeneration. His research contributions have been cited in applied biomaterials, cardiovascular therapy, and diabetes-related tissue engineering studies, reinforcing his influence in the field. 🌐

🔗 Representative Publications with Citation Prompt

📄 1️⃣ Lv C, Li S, Sang M, Cui T, Xie J.
Title: Construction of Microsphere Culture System for Human Mesenchymal Stem Cell Aggregates
Journal: International Journal of Molecular Sciences
Year: 2025, Volume 26, Article 6435
Link: 🔗 Read Here
Citation Context: Frequently cited in organoid culture system research for its innovative approach to MSC aggregate formation.

📄 2️⃣ Jinghui Xie, Xiaoning Li, Yan Zhang, et al.
Title: VE-Cadherin based matrix promoting self-reconstruction of proangiogenic microenvironment
Journal: Journal of Materials Chemistry B
Year: 2021, 9(1), pp. 3357–3370
Link: 🔗 Read Here
Citation Context: Referenced in endothelial differentiation studies exploring angiogenic microenvironments.

📄 3️⃣ Yuanning Lyu, Jinghui Xie, Yang Liu, et al.
Title: Injectable Hyaluronic Acid Hydrogel for Myocardial Repair
Journal: ACS Biomaterials Science & Engineering
Year: 2020, 6(12), pp. 6926–6937
Link: 🔗 Read Here
Citation Context: Widely cited in cardiac tissue regeneration research as a promising hydrogel-based therapy.

📄 4️⃣ Yang Jun, Xie Jinghui, Gao Chao, et al.
Title: VE-cad-Fc Functionalized Hyaluronic Acid Hydrogel
Journal: Journal of Tianjin University
Year: 2019, 52(1), pp. 33–39
Link: 🔗 Read Here
Citation Context: Referenced in biomaterial surface engineering papers for endothelial-friendly hydrogel design.

📄 5️⃣ Chao Gao, Yan Zhang, Jinghui Xie, et al.
Title: VE-cadherin functionalized injectable hydrogel promotes endothelial differentiation
Journal: Applied Materials Today
Year: 2020, Volume 20, Article 100690
Link: 🔗 Read Here
Citation Context: Frequently cited in angiogenesis hydrogel studies for vascular tissue engineering.

📄 6️⃣ Ke Xu, Chuanshun Zhu, Jinghui Xie, et al.
Title: Enhanced Vascularization of PCL Scaffolds through VEGF-Fc
Journal: Journal of Materials Chemistry B
Year: 2018, 6(6), p. 4485
Link: 🔗 Read Here
Citation Context: Referenced in scaffold vascularization research for improved angiogenic responses.

🏆 Conclusion

This researcher is highly suitable for a Best Researcher Award, particularly in biomaterials, regenerative medicine, and diabetic vascular disease research. Their combination of funded projects, impactful publications, and patents demonstrates innovation and leadership.