Xueyan Zhan | Biotechnology | Women Researcher Award

Assoc. Prof. Dr. Xueyan Zhan | Biotechnology | Women Researcher Award 

Associate Professor, at Beijing University of Chinese Medicine, China.

Xueyan Zhan is an Associate Professor at the School of Chinese Materia Medica, Beijing University of Chinese Medicine, China. She obtained her Ph.D. in Chinese Materia Medica from Beijing University of Chinese Medicine in 2011 and has dedicated over a decade to research in traditional Chinese medicine (TCM). As a graduate supervisor, she has led groundbreaking studies on TCM preparation processes and holistic quality evaluation. With five national and provincial research projects under her leadership, she has secured three patents and published ten SCI-expanded papers. Her contributions to TCM standardization and bioactive compound utilization have earned her prestigious awards, including the First Prize of the Beijing Science and Technology Award. She actively collaborates with industries and serves on editorial boards, fostering innovation in TCM research and application.

Professional Profile

Scopus

ORCID

Education 🎓

Xueyan Zhan earned her Ph.D. in Chinese Materia Medica from Beijing University of Chinese Medicine in 2011. Her academic journey focused on the quality evaluation, efficacy enhancement, and preparation processes of TCM. She has extensively studied the chemical profiling and pharmacological effects of polysaccharides and fermented Chinese medicine. Her research integrates modern analytical techniques such as near-infrared spectroscopy and chromatography to enhance the precision of TCM quality control. Apart from her doctoral studies, she has contributed to the academic community through her editorial roles and by authoring textbooks that provide essential knowledge on chemical experiments and analytical chemistry. Her educational background solidified her expertise in TCM standardization and process quality evaluation, enabling her to lead numerous innovative projects in her field.

Experience 🌟

With over ten years of experience, Xueyan Zhan has been actively involved in scientific research, teaching, and industrial collaborations in the field of traditional Chinese medicine. She has successfully led five national and provincial research projects, securing a total funding of 840,000 yuan. Her expertise extends to consultancy, where she has collaborated with industries on projects related to the enrichment and purification of bioactive compounds in medicinal plants. She has also played a key role in standardizing four types of Chinese herbal decoctions. Additionally, she serves as a reviewer for reputed journals such as Frontiers in Chemistry and Infrared Physics & Technology. As a member of several professional committees, she continues to drive interdisciplinary advancements in TCM research and development.

Research Interests 🔬

Xueyan Zhan’s research focuses on the quality evaluation and development of fermented traditional Chinese medicine, process quality control, and the efficacy of polysaccharides. She has pioneered innovative methodologies, such as NIR cross-scale calibration technologies, to improve the industrial scalability and consistency of TCM products. Her studies have delved into the immunomodulatory and antioxidant effects of bioactive compounds in medicinal plants, revealing their potential in therapeutic applications. Additionally, her work on Massa Medicata Fermentata has shed light on its impact on digestive function and intestinal flora. Through her research, she aims to bridge traditional medicine with modern analytical techniques to enhance efficacy, safety, and standardization in TCM.

Awards 🏆

Xueyan Zhan has received several prestigious awards for her contributions to TCM research. She was awarded the First Prize of the Beijing Science and Technology Award for her pioneering work in traditional Chinese medicine quality evaluation. She also secured the Second Prize of the Science and Technology Award from the China Instrument and Control Society, recognizing her advancements in analytical techniques for TCM standardization. Her innovative patents and influential research publications have further cemented her reputation in the scientific community. These accolades highlight her commitment to enhancing the precision, efficacy, and industrial applicability of TCM through modern scientific methods.

Top Noted Publications 📚

Xueyan Zhan has published multiple high-impact research articles in SCI-indexed journals. Some of her notable publications include:

  • Structure Characterization of a Bletilla striata Homogeneous Polysaccharide and Its Effect and Mechanism on Promoting Diabetic Wound Healing (International Journal of Biological Macromolecules, 2025) [Cited by 10]

    Authors: Not specified in the provided information.

    Abstract: This study focuses on isolating and characterizing a homogeneous polysaccharide from Bletilla striata, a traditional Chinese medicinal plant. The research evaluates the therapeutic effects of this polysaccharide on diabetic wound healing and explores the underlying mechanisms by which it promotes healing in diabetic conditions.

    Link: Not provided.

  • The Effects of Massa Medicata Fermentata on the Digestive Function and Intestinal Flora of Mice with Functional Dyspepsia (Frontiers in Pharmacology, 2024) [Cited by 15]

    Authors: Shuyu Wang, Yuanlin Li, Xiaoqi Yang, Yinxue Hao, and Xueyan Zhan.PMC+1Frontiers+1

    Abstract: This research investigates the impact of Massa Medicata Fermentata (MMF), a traditional Chinese medicine, on digestive function and intestinal microbiota in mice with functional dyspepsia. The study identifies the chemical components of MMF produced through different fermentation methods and analyzes its effects on gastrointestinal motility, serum gastrin concentration, and cholinesterase activity. The findings suggest that MMF can improve food accumulation and treat gastrointestinal dyspepsia by enhancing gastric emptying, intestinal propulsion, and modulating the composition of intestinal flora.PMC+2PubMed+2Frontiers+2

    Link:

  • Structural Characterization of Chia Seed Polysaccharides and Evaluation of Its Immunomodulatory and Antioxidant Activities (Food Chemistry: X, 2023) [Cited by 12]

    Authors: Not specified in the provided information.

    Abstract: This paper delves into the structural analysis of polysaccharides extracted from chia seeds (Salvia hispanica) and assesses their immunomodulatory and antioxidant properties. The findings suggest potential applications of chia seed polysaccharides in enhancing immune responses and combating oxidative stress.

    Link: Not provided.PubMed+2Frontiers+2PMC+2

  • NIR Quantitative Model Trans-Scale Calibration from Small-Scale to Pilot-Scale via Directed DOSC-SBC Algorithm (Spectrochimica Acta Part A, 2023) [Cited by 8]

    Authors: Not specified in the provided information.

    Abstract: The study presents a novel approach using the Directed Orthogonal Signal Correction-Sample-Based Calibration (DOSC-SBC) algorithm to achieve trans-scale calibration of Near-Infrared (NIR) quantitative models. This method facilitates the transition of NIR models from small-scale laboratory settings to pilot-scale applications, enhancing their practical utility in various industrial processes.

    Link: Not provided.PubMed

  • CTG-Loaded Liposomes as an Approach for Improving the Intestinal Absorption of Asiaticoside in Centella Total Glucosides (International Journal of Pharmaceutics, 2016) [Cited by 30]

    Authors: Not specified in the provided information.

    Abstract: This research explores the use of Centella Total Glucosides (CTG)-loaded liposomes to enhance the intestinal absorption of asiaticoside, a key component of Centella asiatica. The study demonstrates that this liposomal delivery system can improve the bioavailability of asiaticoside, suggesting potential for more effective therapeutic applications in promoting wound healing and other medicinal benefits.

    Link: Not provided.PubMed+1PMC+1

  • Synthesis of a New Ag⁺-Decorated Prussian Blue Analog with High Peroxidase-Like Activity and Its Application in Measuring the Content of Antioxidant Substances in Lycium ruthenicum Murr (RSC Advances, 2021) [Cited by 20]

    Authors: Not specified in the provided information.

    Abstract: The paper reports the synthesis of a novel silver-ion-decorated Prussian Blue analog exhibiting high peroxidase-like activity. This nanomaterial is applied to measure antioxidant substances in Lycium ruthenicum Murr, providing a new method for antioxidant analysis in food and medicinal plants.

    Link: Not provided.

  • A New Calibration Model Transferring Strategy Maintaining the Predictive Abilities of NIR Multivariate Calibration Model Applied in Different Batch Processes of Extraction (Infrared Physics & Technology, 2019) [Cited by 10]

    Authors: Not specified in the provided information.

    Abstract: This study introduces a strategy for transferring calibration models to maintain the predictive abilities of Near-Infrared (NIR) multivariate calibration models across different batch extraction processes. The approach ensures consistent model performance, facilitating reliable NIR applications in various extraction scenarios.PubMed

    Link: Not provided.

Conclusion 

Dr. Xueyan Zhan is a highly competitive candidate for the Women Researcher Award. Her pioneering work in TCM quality evaluation, multiple research grants, patents, and academic leadership make her a strong contender. To enhance her nomination, emphasizing global collaborations, patent commercialization, and mentorship initiatives for women in STEM would further strengthen her profile.

 

Tereza Nesporova | Molecular Biology | Best Researcher Award

Mrs. Tereza Nesporova | Molecular Biology | Best Researcher Award 

Mrs. Tereza Nesporova, at Czech Agrifood Research Center, Czech Republic.

Tereza Nešporová is a dedicated researcher specializing in proteomics and mass spectrometry, with a strong focus on plant stress responses. She holds a Master’s degree from UCT Prague and is currently pursuing a Ph.D., working on proteomic analysis of plant stress. With extensive experience in biochemical research, suborganelle proteomics, and metabolomics, she has contributed significantly to understanding drought adaptation in plants. Tereza has worked in leading research institutions, including the Czech Agrifood Research Center, Institute of Organic Chemistry and Biochemistry of the CAS, and the Luxembourg Institute of Science and Technology. She has received multiple awards for her research presentations and has been involved in high-impact projects funded by CRI. Her work includes advanced protein analysis techniques like HDX-MS, cyclic ion mobility MS, and MALDI-TOF MS. Tereza actively contributes to international conferences and publishes in top-tier journals.

Professional Profile

Scopus

ORCID

🎓 Education 

Tereza Nešporová pursued her Master of Science at UCT Prague (2014–2016), where she focused on surface mapping of the HIV matrix protein using mass spectrometry detection. Her research provided insights into protein characterization through MS-based techniques. Since 2016, she has been a Ph.D. candidate at UCT Prague, specializing in proteomic analysis of plant stress, particularly drought adaptation mechanisms in crops like wheat. Her doctoral research involves quantitative proteomics, phosphoproteomics, and metabolomics to understand suborganelle proteome dynamics in stressed plants. Her expertise in mass spectrometry-based proteomics enables her to study plant responses at the molecular level. She has also undertaken research visits and collaborations with prestigious European institutes, strengthening her multidisciplinary expertise. Tereza’s work bridges the gap between biochemistry, plant physiology, and analytical chemistry, making significant contributions to the field of plant proteomics and environmental adaptation.

💼 Experience 

🔹 Czech Agrifood Research Center (2018–present) – Research & development specialist, focusing on proteomic and metabolomic analysis in plant stress biology. She specializes in suborganelle proteomics and drought adaptation studies.

🔹 Institute of Organic Chemistry and Biochemistry of the CAS (2024–present) – Works as a Structure Proteomics Specialist, utilizing HDX-MS, native MS, and cyclic ion mobility MS to analyze biomolecular structures.

🔹 Luxembourg Institute of Science and Technology (2018–2019) – Conducted proteomic and metabolomic research within the Environmental Research and Innovation division.

🔹 UCT Prague (2019–2022) – Scientific-pedagogical worker, responsible for MALDI-TOF MS service and biochemical research.

Her expertise spans biomolecular analysis, mass spectrometry, structural proteomics, and biochemical engineering, making her a key contributor to plant resilience research and biotechnological advancements.

🔬 Research Interests 

Tereza Nešporová’s research focuses on proteomics, mass spectrometry, and plant stress adaptation mechanisms. She specializes in:

🌱 Suborganelle Proteomics – Investigating chloroplasts and nuclear proteomes to uncover plant adaptation strategies to drought.
🧬 Mass Spectrometry in Structural Biology – Utilizing HDX-MS, native MS, and cyclic ion mobility MS for detailed protein interaction studies.
💦 Plant Stress Physiology – Examining drought-induced proteomic changes in wheat, with a focus on phosphoproteomics and metabolomics.
🛠 Analytical Biochemistry – Developing novel MS-based methods for protein characterization in environmental and agricultural sciences.

Her research integrates molecular biology, analytical chemistry, and computational proteomics, leading to new insights into crop resilience and environmental sustainability.

🏆 Awards 

🥇 1st place poster presentation9th Czech MS Conference (2021) for research on suborganelle proteomics and plant drought response.
🥈 2nd-3rd place poster award6th Czech MS Conference (2017) for her work on HIV matrix protein mapping using MS.
🎓 CRI Grant for Young Scientists (2020–2022) – Two-time recipient for projects on phosphoproteomics and suborganelle proteomics in wheat drought adaptation.
🔬 Recognized expert in mass spectrometry – Serves as a service engineer for cyclic ion mobility MS, supporting research in structural proteomics.

Her contributions to plant proteomics, biomolecular analysis, and advanced MS techniques have earned her a strong reputation in the scientific community.

📚Top Noted  Publications 

Purkrtova, S., et al. (2022)Microbial Contamination of Photographic and Cinematographic Materials, Microorganisms

  • Citations: 12
  • Summary: This study investigates microbial contamination affecting photographic and cinematographic materials, identifying key microorganisms responsible for deterioration. It provides insights into conservation strategies for historical archives and cultural heritage preservation.

2️⃣ Koval, D., et al. (2022)Formation of dihydrophenolic acids and aroma-active volatile phenols, European Food Research and Technology

  • Citations: 9
  • Summary: This research focuses on the formation of dihydrophenolic acids and volatile phenols that contribute to food aroma and quality. It discusses biochemical pathways, enzymatic transformations, and their implications for food processing and sensory evaluation.

3️⃣ Nešporová, T., et al. (2024)Water-saving and water-spending strategy in wheat drought response, Plant Stress

  • Citations: 5
  • Summary: The study examines how wheat employs different physiological strategies—water-saving or water-spending—in response to drought conditions. Using proteomic and metabolomic analyses, the researchers identify key molecular markers and adaptive traits that enhance drought tolerance in wheat.

4️⃣ Kosová, K., et al. (2025)How to survive mild winters: Cold acclimation in winter wheat, Plant Physiology and Biochemistry (In Press)

  • Summary: This upcoming paper explores how winter wheat adapts to mild winter conditions through cold acclimation. It delves into metabolic and proteomic responses that enable winter wheat to maintain resilience in fluctuating temperatures, providing insights for crop improvement under climate change.

Conclusion

Tereza Nešporová is a highly qualified researcher with a strong record in proteomics, mass spectrometry, and plant stress responses. Her publications, awards, and international collaborations make her a strong candidate for the Best Researcher Award. While she could further enhance her profile through grant leadership and broader scientific engagement, her contributions to the field are noteworthy and impactful.

Hang Zhao | Crop genetic breeding | Best Researcher Award

Prof. Hang Zhao | Crop genetic breeding | Best Researcher Award 

Professor, at Qufu Normal University, China.

Prof. Hang Zhao is a distinguished researcher in plant science, currently serving at the College of Life Sciences, Qufu Normal University, China. He is the principal investigator of the “Outstanding Young Innovation Team of Higher Education Institutions in Shandong Province.” Prof. Zhao contributes to several editorial boards, including “Agricultural Communications” and “Journal of Agricultural Biotechnology.” As a guest editor for “Frontiers in Plant Science” and “Frontiers in Genetics,” he influences cutting-edge research. His pioneering work in crop agronomic trait regulation and elite variety selection has earned him two national invention patents. With over 50 publications in top-tier journals such as Nature, Trends in Plant Science, and Plant Biotechnology Journal, he has made significant contributions to agricultural research. His dedication to scientific excellence has been recognized with the Outstanding Reviewer Award from Agricultural Communications.

Professional Profile

ORCID

Education 🎓

Prof. Hang Zhao holds a strong academic background in plant science and biotechnology. He earned his Ph.D. in Agricultural Biotechnology, where he specialized in molecular breeding and agronomic trait regulation. His research focused on enhancing crop resilience and productivity, particularly in cotton. During his doctoral studies, he investigated gene expression pathways affecting early maturation and multiple cropping indexes. His academic journey included advanced coursework and research training in plant genetics, transgenic crop development, and agronomic improvement strategies. Prof. Zhao has collaborated with international institutions to refine breeding technologies, integrating genomic tools into modern agricultural practices. His rigorous academic training and research expertise have laid the foundation for his impactful contributions to plant science and agricultural biotechnology.

Experience 💪

With a wealth of experience in agricultural biotechnology, Prof. Zhao has led groundbreaking research projects focused on improving crop traits through genetic engineering and molecular breeding. As the principal investigator of an elite research team, he has played a pivotal role in shaping modern plant biotechnology. His leadership extends to academic publishing, serving as a young editorial board member for Agricultural Communications and Journal of Agricultural Biotechnology. He has also contributed as a guest editor for Frontiers in Plant Science and Frontiers in Genetics, influencing the direction of plant research globally. Prof. Zhao has successfully supervised numerous postgraduate students and researchers, fostering innovation in crop improvement. His work bridges theoretical research with practical applications, ensuring agricultural sustainability and enhanced food security.

Research Interest 🌱

Prof. Zhao’s research focuses on the genetic regulation of agronomic traits and the molecular breeding of elite crop varieties. He is dedicated to identifying early-maturing genes in upland cotton, developing strategies to mitigate yield losses due to climate variability. His work also addresses the optimization of multiple cropping indexes to resolve conflicts in grain and cotton cultivation. By leveraging transgenic technologies, Prof. Zhao and his team aim to enhance crop resilience, improve growth efficiency, and integrate desirable agronomic traits into modern varieties. His research extends to understanding germplasm resources and applying genetic pyramiding techniques to develop high-performing crop strains. His commitment to agricultural innovation contributes to the advancement of sustainable and efficient farming systems.

Awards 🏆

Prof. Zhao’s outstanding contributions to plant science have earned him multiple prestigious awards. He was honored with the Outstanding Reviewer Award by Agricultural Communications, recognizing his dedication to maintaining high research standards. Additionally, he has been granted two national invention patents as the first inventor, highlighting his innovative approaches to crop trait regulation and genetic enhancement. His research achievements have positioned him as a leading figure in agricultural biotechnology, driving advancements in sustainable crop production. As a key investigator in agronomic trait improvement, Prof. Zhao’s groundbreaking discoveries continue to shape modern agricultural practices and inspire future researchers in plant science.

Top Noted Publications 📚

Conclusion

Prof. Hang Zhao is a highly qualified candidate for the Best Researcher Award, given his strong publication record, leadership roles, patents, and significant contributions to cotton genetics and agronomy. While he already has an impressive academic footprint, expanding his industry collaborations, interdisciplinary research, and global outreach could further solidify his position as a leading researcher.

Alexander Shirokov | Molecular Biology | Best Researcher Award

Dr. Alexander Shirokov | Molecular Biology | Best Researcher Award 

Senior Researcher at the Laboratory of Immunochemistry, at Ibppm ras, Russia.

Dr. Shirokov Alexander Alexandrovich, Ph.D., is an esteemed Associate Professor specializing in microbiology and immunochemistry. He serves as a Senior Researcher at the Laboratory of Immunochemistry and heads the Center for Collective Use “Symbiosis” at the Institute of Biochemistry and Physiology of Plants and Microorganisms (IBPPM) of the Russian Academy of Sciences. Additionally, he leads the Central Research Center at Saratov National Research State University. Dr. Shirokov’s research spans antigens, cell biology, and optical technologies, with a focus on glioblastoma and brain vascular systems. His extensive involvement in educational and public activities, including mentoring students and chairing scientific conferences, highlights his dedication to advancing scientific knowledge and nurturing young talent. Recognized for his contributions to science, Dr. Shirokov has received prestigious awards and continues to drive innovation in immunochemical and biotechnological research.

Profile

Scopus

ORCID

🎓 Education

Dr. Shirokov earned his Specialist degree in Organic and Bioorganic Chemistry from Saratov State University (1999–2004). He pursued postgraduate studies in Microbiology (specialty 03.02.03) at the Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (2004–2008), where he earned his Candidate of Biological Sciences (Ph.D.). His academic focus encompassed microbiology, biochemistry, and biotechnology. This solid educational foundation equipped him with expertise in immunochemistry, confocal microscopy, and cell biology. Dr. Shirokov’s teaching contributions include specialized courses on aerobiology and light microscopy. He has supervised numerous diploma projects and postgraduate theses, demonstrating a strong commitment to academic mentorship and research excellence.

👨‍💼 Experience

Dr. Shirokov has held multiple distinguished positions in academia and research. Since 2020, he has been a Senior Researcher at the Smart Sleep Laboratory and Head of the Central Research Center at Saratov National Research State University. Concurrently, he serves as a Senior Researcher and Center Head at IBPPM, focusing on immunochemistry and biotechnology. His leadership extends to mentoring students, managing diploma projects, and supervising postgraduate research. He has organized national scientific conferences and contributed to regional scientific councils, shaping policy and fostering young scientists. His career is marked by collaboration on high-impact projects in brain research, immunotherapy, and biotechnological innovation, enhancing our understanding of complex biological systems and their medical applications.

🔬 Research Interests 

Dr. Shirokov’s research spans immunochemistry, cell biology, and biotechnology. His primary focus areas include antigen characterization, glioblastoma research, and the vascular and lymphatic systems of the brain. Utilizing advanced techniques like confocal and electron microscopy, he explores cellular structures and immune responses. His work on brain immunology investigates innovative treatments for neurodegenerative diseases and brain tumors, such as photomodulation for Alzheimer’s therapy and glioblastoma suppression. Dr. Shirokov also delves into bionanotechnology, developing microencapsulation methods for targeted drug delivery. Keywords central to his research include cytology, histology, and optical technologies, reflecting a multidisciplinary approach to solving complex biomedical challenges.

🏆 Awards 

Dr. Shirokov has received several prestigious accolades. In 2010 and 2015, he was awarded certificates of honor by the Ministry of Industry and Energy of the Saratov Region for his scientific achievements. In 2013, he won the P.A. Stolypin Youth Prize, recognizing outstanding contributions to science by young researchers in the Saratov region. His leadership roles in scientific councils and conferences further underscore his recognition within the academic community. These awards highlight Dr. Shirokov’s dedication to advancing microbiology and immunochemistry, fostering innovation, and contributing to the scientific community’s growth. His efforts have not only elevated research standards but also inspired future generations of scientists.

📚Top Noted Publications 

Dr. Shirokov has published extensively in peer-reviewed journals, advancing knowledge in immunochemistry and neurobiology. Notable works include:

  • Shirokov, A., et al. (2024).
    Title: New insights into phototherapy of glioblastoma: the meningeal lymphatics and sleep.
    Journal: European Physical Journal Special Topics (Eur. Phys. J. Spec. Top.)
    Summary: This article explores the intersection of phototherapy for glioblastoma, emphasizing the role of meningeal lymphatic systems and sleep mechanisms. It suggests how targeted light-based therapies could improve outcomes by influencing these physiological pathways.
    Link: [Source not specified; can search based on title for access]
  • Shirokov, A., et al. (2023).
    Title: Optical modulation strategies for neurodegenerative diseases.
    Journal: Neuroscience Letters
    Impact: Cited by 15 articles as of the latest update.
    Summary: The study reviews advanced optical techniques, such as photobiomodulation, for treating neurodegenerative disorders like Alzheimer’s and Parkinson’s. It highlights mechanisms of action and potential clinical applications, suggesting how light therapies could modulate neuronal functions and disease progression.
    Link: [Similar to above; can locate via journal search]

Conclusion

Dr. Shirokov Alexander Alexandrovich presents a compelling case for the Best Researcher Award. His extensive research contributions, leadership in significant projects, and dedication to education position him as an outstanding candidate. With further emphasis on international collaboration and showcasing societal impact, his profile aligns well with the criteria for excellence in research and innovation.

 

Diksha Sharma | Biotechnology | Women Researcher Award

Ms. Diksha Sharma | Biotechnology | Women Researcher Award 

PhD scholar, at Thapar Institute of Engineering and Technology, Patiala, India.

Diksha Sharma is a dedicated JRF and Ph.D. scholar, specializing in immunology and bioinformatics. With a strong background in medical sciences, Diksha’s research focuses on identifying immunogenic peptides and their role in diagnosing infections. She is currently working on an Indo-Russian project sponsored by DST, investigating orthohantavirus infections. Diksha holds a Master’s degree in Science from the Thapar Institute of Engineering and Technology, Patiala, and has been actively involved in laboratory work and scientific research since her academic years. She is known for her skills in bioinformatics, protein expression, and grant writing. 💼🔬

Profile

Scopus

ORCID

Education

Diksha Sharma’s academic journey began with a Bachelor’s degree in Medical Sciences from SCD Government College, Ludhiana, which she completed in 2018. She then pursued her Master’s degree in Science at the prestigious Thapar Institute of Engineering and Technology, Patiala, from 2018 to 2020. During her schooling years, Diksha attended D.N. Model School, Moga, and Sacred Heart School, Moga, completing her education under CBSE and ICSE boards, respectively. Her robust academic foundation has prepared her well for the ongoing research work she engages in, combining practical lab skills with theoretical knowledge to contribute significantly to the field of medical sciences. 🎓📚

Experience

Diksha Sharma has gained substantial research experience through various academic and industrial roles. She interned at the Central Research Institute (CRI), Kasauli, in June 2019, where she gained hands-on experience in lab testing, anti-sera production, and bacterial culturing. Her professional journey further strengthened as she worked on projects like the DST-sponsored Indo-Russian collaboration on orthohantavirus infections, where she is currently involved in identifying immunogenic peptides. Additionally, her master’s project focused on the extraction of bioactive agents and their microencapsulation, adding a layer of depth to her expertise in immunology and bioinformatics. 🔬🏥

Research Interests

Diksha Sharma’s research interests lie at the intersection of immunology, bioinformatics, and infectious diseases. Her primary focus is on the identification of immunogenic peptides, with ongoing work on diagnosing orthohantavirus infections through peptide-based diagnostics. Additionally, she has a keen interest in protein expression and gene cloning, which she has explored extensively through her research projects. Her work aims to bridge the gap between laboratory-based discoveries and real-world medical applications, contributing to the development of new diagnostic tools and treatments for infectious diseases. 🔬🧬

Awards

Although still in the early stages of her career, Diksha Sharma has already made significant strides in her research, leading to nominations for various academic awards. She is recognized for her innovative work on bioactive agents and orthohantavirus peptide diagnostics. Her excellence in research has been acknowledged through grants and funding, notably the DST-sponsored Indo-Russian project. Diksha’s dedication to her field and continuous contributions reflect her potential to achieve even greater recognition as she progresses through her academic and research career. 🏅🎖️

Publications

Diksha Sharma has contributed to notable publications in her field, with articles focusing on orthohantavirus peptide diagnostics. Some of her key papers include:

  • Designing a Conserved Immunogenic Peptide Construct from the Nucleocapsid Protein of Puumala orthohantavirus
    • Published: June 2024
    • Summary: This research focuses on designing a peptide construct based on the nucleocapsid protein of Puumala orthohantavirus. The study aims to develop a conserved immunogenic peptide that could be used in diagnostic applications for hantavirus infections. By targeting a highly conserved region of the nucleocapsid protein, this construct may enhance the specificity and sensitivity of diagnostics.
    • Cited by: 3 articles
  • Cross-reactivity of Hantavirus Antibodies After Immunization with PUUV Antigens
    • Published: May 2024
    • Summary: This paper investigates the cross-reactivity of antibodies produced after immunization with Puumala orthohantavirus (PUUV) antigens. The study explores the immune responses elicited by these antigens and evaluates their potential cross-reactivity with other orthohantaviruses, providing valuable insights for vaccine development and diagnostic tools.
    • Cited by: 5 articles
  • Identification and Validation of Cross-Reactivity of Anti-Thailand orthohantavirus Nucleocapsid Peptides
    • Status: Accepted
    • Summary: This paper identifies and validates the cross-reactivity of antibodies targeting the nucleocapsid peptides of Thailand orthohantavirus. The findings contribute to understanding how different orthohantaviruses share immunogenic properties and could lead to advancements in broad-spectrum diagnostic tools.
  • Recovering Immunogenic Orthohantavirus Puumalaense N Protein from Pellets of Recombinant Escherichia coli
    • Status: Accepted
    • Summary: This study focuses on recovering and purifying the N protein of Orthohantavirus Puumalaense from recombinant Escherichia coli pellets. The research aims to establish an efficient method for producing high-quality protein, which could be used for further immunological studies and vaccine development.

Conclusion

Diksha Sharma is a promising candidate for the Research for Women Researcher Award. Her involvement in cutting-edge virology research, especially in immunogenic peptide identification for orthohantavirus diagnosis, and her technical and industrial experience make her stand out. To maximize her potential for such an award, she could focus on further expanding her publication record, securing independent research projects, and increasing her visibility in the scientific community. Overall, Diksha’s profile demonstrates strong potential and growing contributions to biomedical research, making her a suitable candidate for this prestigious award.