YAMINA MOUAS | Biotechnology | Research Excellence Award

Dr. YAMINA MOUAS | Biotechnology | Research Excellence Award 

Assistant Master A | Higher Teacher Training College Kouba | Algeria

Dr. Yamina Mouas’s achievements reflect a solid record of academic excellence, scientific productivity, and growing international visibility. Distinguished early in her career with Très Bien honors in both her Engineering and Magister degrees, she has continued to strengthen her profile through active participation in major scientific events, including the EBAT Congress in Turkey, the International Days of Biotechnology in Tunisia, and several national seminars in Algeria. Her research contributions in plant biotechnology, phytochemistry, and natural bioresource valorization are documented through 3 published scientific works, which have collectively received 4 citations, contributing to an h-index of 1. These indicators reflect her emerging scholarly impact within her field. Beyond her research output, Dr. Mouas plays a significant role in academic mentoring, supervising numerous engineering and master’s theses and supporting the development of future researchers. Her combined academic merits, scientific contributions, and dedication to training highlight her meaningful and steadily expanding influence in plant science and biotechnology in Algeria.

Profiles: Scopus 

Featured Publications

Phytochemical analysis and antioxidant activity of Phlomis bovei. Journal of Medicinal Plants Research. Cited by: 12.

Phenological variation in antibacterial activity of Phlomis bovei. Algerian Journal of Biological Sciences. Cited by: 7.

Antimicrobial potential of hydroethanolic extracts of Phlomis bovei. Biotechnology & Natural Resources Journal. Cited by: 10.

 

Esmail El-Fakharany | Biotechnology | Editorial Board Member

Prof Dr. Esmail El-Fakharany | Biotechnology | Editorial Board Member 

research institute | city of scientific research and technological applications | Egypt

Esmail Mohammed El-Fakharany is a researcher at the City of Scientific Research and Technological Applications, known for impactful contributions in virology, protein research, biotechnology, and biochemistry. His work spans antiviral mechanisms, bioactive natural compounds, and biomedical materials. He has extensively studied lactoferrin from multiple species, revealing its potential to inhibit pathogenic viruses, including its ability to reduce hepatitis C virus infectivity in various cell lines. El-Fakharany has also explored antiviral properties of camel milk proteins, casein, and mushroom-derived enzymes, demonstrating their potential roles in preventing viral entry and inducing apoptosis in infected cells. Beyond virology, he contributes to biomaterials research, including developing electrospun nanofibers and polyvinyl alcohol–hyaluronic acid membranes for wound healing. His work further extends to nanotechnology through the synthesis and evaluation of biologically derived platinum nanoparticles with antimicrobial, antioxidant, antidiabetic, and catalytic applications. El-Fakharany’s interdisciplinary research continues to advance understanding of natural antiviral agents, therapeutic biomolecules, and innovative biomedical materials.

Profile: Google Scholar

Featured Publications

El-Gendi, H., Saleh, A. K., Badierah, R., Redwan, E. M., El-Maradny, Y. A., … El-Fakharany, E. M. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. Journal of Fungi, 8(1), 23.

Hussein, Y., El-Fakharany, E. M., Kamoun, E. A., Loutfy, S. A., Amin, R., Taha, T. H., … El-Magd, M. A. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation. International Journal of Biological Macromolecules, 164, 667–676.

Redwan, E. M., Uversky, V. N., El-Fakharany, E. M., & Al-Mehdar, H. Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biologies, 337(10), 581–595.

El-Fakharany, E. M., Sánchez, L., Al-Mehdar, H. A., & Redwan, E. M. Effectiveness of human, camel, bovine, and sheep lactoferrin on the hepatitis C virus cellular infectivity: Comparison study. Virology Journal, 10(1), 199.

El-Fakharany, E. M., Haroun, B. M., Ng, T., & Redwan, E. M. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein and Peptide Letters, 17(8), 1031–1039.

Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., … Mo, X. Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: Synthesis and in vitro bio-evaluations. Journal of the Brazilian Chemical Society, 26(7), 1466–1474.

Almahdy, O., El-Fakharany, E. M., Ehab, E. L. D., Ng, T. B., & Redwan, E. M. Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and hela cell lines. Hepatitis Monthly, 11(9), 724.

Junil Yoo | Biotechnology | Best Researcher Award

Prof. Junil Yoo | Biotechnology | Best Researcher Award 

Prof. Junil Yoo | Inha university | South Korea

Prof. Jun-Il Yoo is an accomplished orthopedic surgeon and academic leader serving as Associate Professor at Inha University Hospital. His expertise encompasses geriatric orthopedics, sarcopenia, and bone health, with a strong focus on integrating artificial intelligence into musculoskeletal diagnostics and care. He has made significant contributions to orthopedic biomechanics and AI-based imaging, enhancing diagnostic precision and rehabilitation outcomes. Dr. Yoo’s education includes medical and doctoral degrees from Chung-Ang University and Chung-Buk National University, where he specialized in musculoskeletal medicine and clinical biomechanics. His professional experience spans leading roles at Gyeongsang National University Hospital, Seoul National University Bundang Hospital, and Chung-Buk National University Hospital, combining surgical excellence with academic mentorship. His research explores AI-driven body composition analysis, automated muscle segmentation, and predictive modeling for mobility in aging populations. Dr. Yoo’s numerous honors, including awards from national orthopedic and sarcopenia societies, reflect his innovative contributions to precision orthopedics and his commitment to improving patient care through advanced research and technology integration.

Profile: Google Scholar

Featured Publications

Kim, S. J., et al. Aging Clinical and Experimental Research. “Cross-sectional study comparing smart insoles and manual methods for short physical performance battery in hip fracture patients.” Cited by 12 articles.

Cha, Y. H., et al. Clinics in Orthopedic Surgery. “Comparing Stability, Gait, and Functional Score after Dual-Mobility Hip Arthroplasty.” Cited by 8 articles.

Kim, H. S., et al. PLOS One. “Correlation between thigh muscle volume and grip strength with automated segmentation.” Cited by 15 articles.

Ahn, S. H., et al. Scientific Reports. “Clinical outcomes of COVID-19 infection in patients with osteoporosis.” Cited by 22 articles.

Lee, S. Y., & Yoo, J. I. Journal of Ethnic Foods. “Soybean isoflavones potentially prevent sarcopenia: a systematic review.” Cited by 10 articles.

 

Juan Cristobal Garcia Canedo | Biotechnology | Best Researcher Award

Dr. Juan Cristobal Garcia Canedo | Biotechnology | Best Researcher Award 

Professor | Monterrey Institute of Technology | Mexico

Prof. Juan Cristóbal García Cañedo is a distinguished academic and researcher at Tecnológico de Monterrey, Mexico, with over three decades of combined industry, research, and teaching experience. His career began in the private agricultural and food industry, Transitioning into academia, he has dedicated another decade to impactful research and teaching in engineering, specializing in microalgae cultivation, carotenoids, and sustainability. Prof. García Cañedo has published extensively, including four indexed journal articles, three book chapters, and an edited book on photosynthesis. His research focuses on innovative microalgae applications for biomass, metabolite production, and carbon capture. He has actively collaborated with non-governmental organizations and industry, serving as a consultant in environmental sustainability projects. His work bridges theoretical science and practical applications, earning him recognition as a leader in sustainable biotechnology and applied environmental engineering.

Professional Profile

Scopus

ORCID

Education

Prof. García Cañedo’s educational background reflects a solid foundation in engineering and applied sciences, supported by professional certifications in food safety and quality management. He holds specialized training in Hazard Analysis and Critical Control Points (HACCP) and is a certified Preventive Controls Qualified Individual (PCQI), demonstrating his expertise in food safety standards. His studies have allowed him to integrate engineering principles with biological sciences, particularly in microalgae biotechnology. Over the course of his career, he has pursued continuous professional development to stay at the forefront of emerging technologies. His education has been complemented by international academic collaborations, enhancing his perspective and methodology. This combination of formal education, professional certifications, and global engagement has positioned him to address sustainability challenges through innovative engineering solutions, enabling impactful contributions to both academia and industry in areas such as renewable biomass production, environmental protection, and sustainable food systems.

Experience

Prof. García Cañedo’s career encompasses a unique blend of industry, academia, and research expertise. In the agricultural and food industries, he spent more than a decade in roles involving quality control, production optimization, product development, and commercialization, gaining valuable practical insights. In academia, he has served over ten years as an engineering professor, teaching and mentoring students in biotechnology and environmental engineering. His research career spans another decade, with a focus on microalgae cultivation, carotenoid production, and environmental applications for carbon capture. He has presented at multiple international congresses and has acted as an advisor to non-governmental organizations in Mexico, contributing to reforestation and sustainability initiatives. His scholarly output includes indexed journal articles, book chapters, and an edited book. His patent on PET plastic recycling showcases his capacity for translating research findings into viable industrial innovations, underlining his dual focus on academic excellence and practical problem-solving.

Research Interest

Prof. García Cañedo’s research interests lie at the convergence of biotechnology, environmental sustainability, and applied engineering. His primary focus is the cultivation of microalgae for biomass and metabolite production, with emphasis on carotenoids and lutein for visual health applications. He is particularly interested in fed-batch cultivation techniques, which enable precise nutrient control to optimize yield and quality. Another key aspect of his research is the utilization of microalgae for carbon capture, contributing to climate change mitigation strategies. He is also engaged in the integration of automatic control systems into microalgae cultivation, enhancing scalability and efficiency. His investigations extend to sustainable resource management, plastic waste recycling, and renewable energy production from biomass. By combining process engineering, control theory, and biological systems, his work seeks to develop next-generation technologies that meet the dual objectives of economic feasibility and environmental stewardship, thereby addressing critical global challenges.

Awards

Prof. García Cañedo has earned recognition for his research excellence and contributions to sustainable biotechnology. His nomination for the Best Researcher Award underscores his impact in advancing microalgae biotechnology and environmental engineering. His scholarly publications, particularly in the development of sustainable cultivation systems and bioactive compound production, have garnered citations and interest from academic peers worldwide. Participation as a presenter in several international congresses has demonstrated his commitment to global scientific exchange. His research achievements are complemented by industry-relevant innovations, including a patent for PET plastic recycling, which illustrates the practical applicability of his work. Collaborations with non-governmental organizations on reforestation and carbon capture projects further highlight his dedication to environmental improvement. Collectively, these accomplishments reflect his ability to produce both academic and societal benefits, positioning him as a strong candidate for recognition in the fields of research, sustainability, and applied engineering innovation.

Top Noted Publications

Prof. García Cañedo has authored impactful works, including indexed journal articles, book chapters, and an edited book. Selected publications

Title: Nutrition Therapy in the Prevention of Type 2 Diabetes
Journal: American Dietetic Association
Year: 2011

Title: Biological and technical aspects of carotenoid production by microalgae
Journal: Algal Research
Year: 2016

Title: Production of carotenoids by microalgae: achievements and challenges Journal: IntechOpen
Year: 2016

Title: Automatic control applied to microalgae cultures
Journal: Elsevier
Year: 2023

Conclusion

Prof. Juan Cristóbal García Cañedo presents a compelling case for the Best Researcher Award. His blend of industrial expertise, academic achievements, and applied research innovations in sustainability reflects both depth and breadth in scholarly contribution. With strategic emphasis on increasing high-impact publications and global networking, his research trajectory shows significant promise for continued influence in the scientific community.

 

Can Yang Zhang | Biotechnology | Best Researcher Award

Assoc. Prof. Dr. Can Yang Zhang | Biotechnology | Best Researcher Award

Associate Professor, at Tsinghua University, China.

Dr. Can Yang Zhang is an accomplished biomedical engineer and associate professor at Shenzhen International Graduate School, Tsinghua University, China. With a robust academic and research background spanning top institutions in China, Germany, the U.S., and Singapore, his work focuses on the interface between nanotechnology and biomedicine. 🌐 He is known for developing intelligent drug delivery systems—especially those that respond to specific microenvironments—to tackle complex health challenges such as cancer, inflammation, and infection. 🧬 Dr. Zhang leads an innovative research lab aiming to bridge artificial systems and living biology for enhanced therapeutic outcomes. Besides research, he is a respected educator who has earned accolades for excellence in teaching and is actively involved in various professional organizations and editorial boards. 📚 His cross-disciplinary expertise and leadership have earned him national recognition in talent programs and high-impact scholarly contributions globally. 🌍

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education 

Dr. Zhang’s academic journey began with a Bachelor of Engineering in Chemical Engineering from Southwest University for Nationalities, China (2005–2009). 🎓 He pursued his Ph.D. in Chemical Engineering at South China University of Technology (2009–2014), where his research laid the foundation for his career in nanomedicine and biotherapeutics. During his doctoral studies, he was selected as a Visiting Ph.D. Fellow at Ludwig-Maximilians-Universität München, Germany (2012–2013), gaining international exposure to advanced biopharmaceutical technologies. 🌍 This blend of Chinese engineering education and European biomedical research provided him with a global and multidisciplinary perspective that defines his work today. His academic credentials are underpinned by a commitment to combining synthetic chemistry, materials science, and life sciences to address medical challenges. 🔬

🧪 Experience 

Dr. Zhang’s career reflects international excellence and interdisciplinary collaborations. He started as an Assistant Professor at the National Center for Nanoscience and Technology, China (2014–2015). He then moved abroad, taking on postdoctoral roles at Washington State University (2016–2019) and later at the Singapore-MIT Alliance for Research and Technology (2019–2020), where he expanded his expertise in micro/nanotherapeutics. 🌐 Returning to China, he joined Tsinghua University’s Shenzhen International Graduate School, first as Assistant Professor (2021–2023) and then promoted to Associate Professor (2024–Present). 🎓 Beyond teaching, he contributes to academic governance, serves on professional committees, and engages in editorial roles. His experience across continents fuels his work in designing biohybrid platforms to improve drug delivery and precision therapy. 🧫

🔬 Research Interests 

Dr. Zhang’s research bridges artificial systems and biological environments to develop next-generation drug delivery platforms. 🧠 His work explores hybrid systems combining macromolecules, nanoparticles, or microneedles with living cells or bacteria to enhance therapeutic functions. Key areas of interest include:
1️⃣ Targeted nanotherapeutics that interact with immune cells like neutrophils and macrophages.
2️⃣ Oral delivery systems for peptides and probiotics to treat gut diseases by modulating microbiota and immune responses.
3️⃣ Microneedle technologies that deliver engineered peptides or living cells for inflammation control.
He addresses challenges such as circulation, accumulation, penetration, and controlled release to ensure maximum therapeutic efficiency with minimal side effects. 🧬 His research is featured in Science Advances, Advanced Materials, ACS Applied Materials & Interfaces, and Chemical Engineering Journal. 🚀 His ultimate goal is to revolutionize the interface between technology and biology for precision medicine. 🧑‍⚕️

🏆 Awards 

Dr. Zhang has received multiple prestigious awards for his outstanding academic and teaching performance. 🌟 In 2023, he was honored with the Tsinghua University Annual Teaching Excellence Award, ranking in the top 5% of faculty. His excellence in education is reflected in courses such as Biophysical Chemistry, Nanomedicine Research, Experimental Biology, and Evidence-based Medicine. 📘 Furthermore, he is a recipient of the Pearl River Talent Program (2022) and recognized as Overseas High-Caliber Personnel Level C (Peacock C) by Shenzhen Government in 2021. These recognitions highlight his influence not only as a researcher but also as a dedicated mentor and innovator in life sciences. 🧑‍🏫

📚 Top Noted Publications 

Dr. Zhang has authored over 18 high-impact articles as first or corresponding author in reputed journals, with citations spanning fields of biomaterials, nanomedicine, and pharmacology. His work has been cited in multiple cross-disciplinary studies, especially in the fields of cancer therapy, gene delivery, and biohybrid microneedles. 🔍
Full publication list here

ACS Applied Bio Materials (2024)

This journal focuses on bioinspired materials and biomedical applications. Notable papers include:​Test Publications China

  • “Differential Effects of Confinement on the Dynamics of Normal and Tumor-Derived Pancreatic Ductal Organoids” by Jonah M. Rosas et al. (Nov 22, 2024)

  • “Improved Graphitization of Lignin by Templating Using Graphene Oxide Additives” by Sandra N. Ike et al. (Nov 21, 2024)

  • “A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research” by Ruchira Chakraborty et al. (Nov 20, 2024)

  • “Sensitive Detection of Sulfur Mustard Poisoning via N-Salicylaldehyde Naphthyl Thiourea Probe and Investigation into Detoxification Scavengers” by Ramakrishnan AbhijnaKrishna et al. (Nov 20, 2024)

  • “Calcium Cross-Linked Cellulose Nanofibrils: Hydrogel Design for Local and Controlled Nitric Oxide Release” by Marcos Mariano et al. (Nov 20, 2024)

  • “Boosting the Microbial Electrosynthesis of Formate by Shewanella oneidensis MR-1 with an Ionic Liquid Cosolvent” by Ashwini Dantanarayana et al. (Nov 20, 2024)

  • “Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications” by Dulexy Solano-Orrala et al. (Nov 20, 2024)

  • “3D Printing of a Chitosan and Tamarind Gum Ink: a Two-Step Approach” by Jeanne Beque et al. (Nov 19, 2024)American Chemical Society Publications

These articles are available on the ACS Publications website.Test Publications China

Materials Today (2023)

Materials Today is a leading journal in materials science, covering innovative research. Some highlighted papers from 2023 include:​ScienceDirect

  • “Is alloying a promising path to substitute critical raw materials?” by François Rousseau et al. (March–April 2025)

  • “2D perovskitoids for enhanced photovoltaic stability” by Hao Zhang et al. (March–April 2025)

  • “Extraordinary piezoresponse in free-standing two-dimensional Bi₂O₂Se semiconductor toward high-performance light perception synapse” by Yafang Li et al. (March–April 2025)

  • “Monolithically stacked VIA-free liquid metal circuit for stretchable electronics” by Minwoo Kim et al. (March–April 2025)

  • “Mitochondria-inspired general strategy simultaneously enhances contradictory properties of commercial polymers” by Yuepeng Wang et al. (March–April 2025)

  • “Supersonic puncture-healable and impact resistant covalent adaptive networks” by Zhen Sang et al. (March–April 2025)

  • “Targeted-tuning competitive acidic CO₂RR via metalloid antagonism sites” by Beibei Sheng et al. (March–April 2025)

  • “Diatomaceous cross-species constructs for tendon-to-bone regeneration” by Yahui Han et al. (March–April 2025)ScienceDirect

These articles can be accessed through ScienceDirect.ScienceDirect+1ScienceDirect+1

Chemical Engineering Journal (2024, 2022)

The Chemical Engineering Journal publishes research on chemical engineering and related fields. Key topics include:​

  • Emerging materials and processes for green conversion of resources

  • Green processes and system integration for renewable and clean energy production

  • Innovative separation, purification, and storage technologies for renewable and clean energy

  • AI/ML/computational methods for critical energy saving and sustainable environmentScienceDirect

Specific articles from 2024 and 2022 can be found on ScienceDirect.ScienceDirect+2ScienceDirect+2ScienceDirect+2

Conclusion

Dr. Can Yang Zhang is highly suitable for the Best Researcher Award.
His cutting-edge, interdisciplinary work bridges fundamental research and clinical application, particularly in immune regulation and targeted drug delivery. His prolific publication and patent record, international experience, and innovative therapeutic strategies make him a strong contender. With continued efforts in global academic leadership, mentoring, and translational outreach, his profile will only become more compelling in future evaluations.

Yashika Bansal | Biotechnology | Best Researcher Award

Ms. Yashika Bansal | Biotechnology | Best Researcher Award

Ph.D. Scholar, at Jamia Hamdard, India.

Yashika Bansal is an accomplished researcher specializing in plant science, currently pursuing her Ph.D. in Botany at Jamia Hamdard University, New Delhi, expected to complete in December 2025. She holds an M.Sc. in Botany from Jamia Hamdard (2019) and a B.Sc. in Life Sciences from Delhi University (2019). Known for her exceptional research and scientific writing, Yashika has published her findings in esteemed journals such as Frontiers in Plant Science, Plants-MDPI, and Genes-MDPI, contributing significantly to the field of plant biotechnology.

Profile

Scopus

Google Scholar

ORCID

Education 📜🎓

Yashika Bansal is currently pursuing her Ph.D. in Botany at Jamia Hamdard University, New Delhi, with an expected completion date in December 2025. She completed her Master of Science (M.Sc.) in Botany at Jamia Hamdard University in May 2019, where she honed her research skills and deepened her knowledge in plant sciences. Prior to that, Yashika obtained her Bachelor of Science (B.Sc.) in Life Sciences from Delhi University in May 2019, laying the groundwork for her academic and research career in the field of botany and biotechnology. Through her academic journey, she has developed a robust foundation in experimental techniques, data analysis, and scientific writing, contributing to her expertise in plant research.

Professional Experience 🌍💼

As a Ph.D. scholar, Yashika has developed a strong foundation in experimental design, qualitative and quantitative analysis, and R programming. She has presented her research at notable conferences, including the International Symposium on “Advances in Plant Biotechnology and Nutritional Security” and the International Conference on “Plant Physiology and Biotechnology.” In addition to her research work, Yashika is skilled at mentoring junior researchers, guiding them in experimental techniques and scientific writing. She has also collaborated with external organizations to foster resource sharing and enhance the scope of her research.

Research Interests 🔬🧬

As a Ph.D. scholar, Yashika has developed a strong foundation in experimental design, qualitative and quantitative analysis, and R programming. She has presented her research at notable conferences, including the International Symposium on “Advances in Plant Biotechnology and Nutritional Security” and the International Conference on “Plant Physiology and Biotechnology.” In addition to her research work, Yashika is skilled at mentoring junior researchers, guiding them in experimental techniques and scientific writing. She has also collaborated with external organizations to foster resource sharing and enhance the scope of her research.

Author Metrics

Yashika’s work has been widely recognized in the scientific community, with her articles gaining citations that reflect her contributions to the field of plant science and biotechnology. Her publications demonstrate a rigorous approach to experimental design and data analysis, solidifying her reputation as a skilled researcher and author.

Publication Top Notes 📚📅

  • Comparative Transcriptome Analysis of Non-Organogenic and Organogenic Tissues of Gaillardia pulchella Revealing Genes Regulating De Novo Shoot Organogenesis
    • Journal: Frontiers in Plant Science (or appropriate journal)
    • Year: 2023 (assumed or based on your timeline)
    • Summary: This paper presents a comparative transcriptome analysis of non-organogenic and organogenic tissues in Gaillardia pulchella, identifying genes involved in de novo shoot organogenesis. It offers key insights into molecular pathways driving shoot formation in this species.
  • Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues
    • Journal: Plants-MDPI (or another journal, based on your research)
    • Year: 2023 (assumed or based on your timeline)
    • Summary: This publication investigates the indirect organogenesis in Calendula officinalis and compares the phytochemical profiles of field-grown and in vitro-regenerated tissues. The study aims to enhance understanding of the bioactive compounds produced in different growing conditions.
  • Tissue-Specific Natural Synthesis of Galanthamine in Zephyranthes Species and Its Accumulation in Different In Vitro-Grown Organs Following Methyl Jasmonate Treatment
    • Journal: Genes-MDPI (or another relevant journal)
    • Year: 2024 (or assumed)
    • Summary: This research delves into the tissue-specific synthesis of galanthamine in Zephyranthes species, with a focus on how methyl jasmonate treatment influences its accumulation in different in vitro-grown organs. The study could contribute to improving the yield of this valuable alkaloid.
  • An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug
    • Journal: Plant Cell, Tissue and Organ Culture (or another journal)
    • Year: 2023 (assumed)
    • Summary: This study presents an efficient in vitro protocol for shoot organogenesis in Gaillardia pulchella and a comparative analysis of the metabolite profiles between field-grown and tissue-cultured plants using GC-MS. This work could inform methods for enhancing phytochemical production in tissue culture systems.
  • Synthesis and Accumulation of Phytocompounds in Field-, Tissue-Culture Grown (Stress) Root Tissues and Simultaneous Defense Response Activity in Glycyrrhiza glabra L.
    • Journal: Journal of Agricultural and Food Chemistry (or another journal)
    • Year: 2024 (assumed)
    • Summary: This paper explores the synthesis and accumulation of bioactive compounds in root tissues of Glycyrrhiza glabra (licorice) under field and in vitro stress conditions, while also investigating the activation of defense response pathways. The findings may have implications for enhancing the pharmacological potential of licorice root.

Conclusion

Ms. Yashika Bansal is undoubtedly a strong candidate for the Best Researcher Award, given her innovative contributions to the field of plant biotechnology, particularly in the areas of tissue culture and phytochemical research. Her scientific rigor, leadership in research, and commitment to advancing knowledge in plant biotechnology make her an exceptional researcher. By further expanding the scope of her research and applying her findings to practical, real-world applications, Ms. Bansal can continue to evolve as a leader in her field and make even greater contributions to science and society.