Yaping Sun | Molecular Biology | Research Excellence Award

Dr. Yaping Sun | Molecular Biology | Research Excellence Award

Associate Senior Research Fellow | Institute of Tsinghua university in shenzhen | China

Dr. Yaping Sun is an accomplished molecular biologist and Associate Senior Research Fellow at the Institute of Tsinghua University, Shenzhen. She is internationally recognized for her contributions to protein structural biology, epigenetic regulation, and DNA polymerase engineering. Her interdisciplinary research bridges fundamental molecular mechanisms with translational biotechnology, advancing both basic biology and applied diagnostics. Dr. Sun has revealed mechanisms of parental histone inheritance, developed engineered DNA polymerases with enhanced activity, and established microfluidics-based enzyme evolution platforms. She leads competitively funded programs, with 5 published documents, 10 citations by 7 documents, and an h-index of 2.

Citation Metrics (Scopus)

100

80

60

40

20

0

Citations
10

Documents
5

h-index
2

        🟦 Citations    🟥 Documents    🟩 h-index


View Scopus Author Profile
View Google Scholar Author Profile

Featured Publications

Maryam Sharzehee | Molecular Biology | Excellence in Research Award

Assist. Prof. Dr. Maryam Sharzehee | Molecular Biology | Excellence in Research Award 

Lecturer | Yazd University | Iran

Assist. Prof. Dr. Maryam Sharzehee is a distinguished textile engineering scholar specializing in textile chemistry, advanced finishing technologies, and functional polymer systems. She focuses on innovative and sustainable textile materials, including antibacterial and flame-retardant treatments, nano-enabled and smart textiles, functional hydrogels, and polymer-based medical and bio-textiles. Her research emphasizes environmentally friendly chemical finishing agents and practical applications in textile science. Dr. Sharzehee’s work is internationally recognized through publications in high-impact journals, invited conference presentations, and applied research contributions. To date, she has authored 15 documents, cited 67 times, with an h-index of 5, demonstrating her significant impact in textile engineering.

 

Citation Metrics (Scopus)

80
60
40
20
0

Citations
67

Documents
15

h-index
5

        🟦 Citations    🟥 Documents    🟩 h-index


View Scopus Author Profile
View Google Scholar Author Profile

Featured Publications

Sooyoung Kim | Molecular Biology | Editorial Board Member

Dr. Sooyoung Kim | Molecular Biology | Editorial Board Member

Industry | US Neurophth Therapeutics (Ex-) | United States

Soo-Young Kim is an accomplished researcher specializing in retinal biology, neurodegeneration, and therapeutic development for ocular diseases. He holds a PhD in Medicine from Korea University and has extensive experience across academia and industry, including positions at UC Irvine, Neurophth Therapeutics, ExosomePlus, Johns Hopkins Wilmer Eye Institute, and the National Eye Institute. His research focuses on retinal development, age-related macular degeneration, and neovascularization, with significant contributions to understanding photoreceptor synapse formation, retinal degeneration models, and inflammatory pathways in pathological neovascularization. Kim has authored numerous publications in high-impact journals, advancing both basic science and translational applications in ophthalmology. His work combines molecular, cellular, and whole-mount techniques to elucidate disease mechanisms and support drug evaluation, reflecting a strong commitment to bridging experimental research with therapeutic innovation.

Profile: ORCID

Featured Publications

Kim, S.-Y., Park, C. H., Moon, B.-H., & Seabold, G. K. Murine Retina Outer Plexiform Layer Development and Transcriptome Analysis of Pre-Synapses in Photoreceptors. Life, 14(9), 1103.

Moon, B.-H., Kim, Y., & Kim, S.-Y. Twenty Years of Anti-Vascular Endothelial Growth Factor Therapeutics in Neovascular Age-Related Macular Degeneration Treatment. International Journal of Molecular Sciences, 24(16), 13004.

Kim, S.-Y., & Qian, H. Comparison between sodium iodate and lipid peroxide murine models of age-related macular degeneration for drug evaluation—a narrative review. Annals of Eye Science, 7, Article 25.

Kim, S.-Y., Zhao, Y., Kim, H.-L., Oh, Y., & Xu, Q. Sodium iodate-induced retina degeneration observed in non-separate sclerochoroid/retina pigment epithelium/retina whole mounts. Annals of Eye Science, 7, Article 27.

Lee, S.-J., & Kim, S.-Y. Mouse Sclerochoroid/RPE/Retina posterior eyeball staining and Whole Mounts. BIO-PROTOCOL, 11(15), e3872.

Kim, S.-Y. Inflammatory pathways in pathological neovascularization in retina and choroid: a narrative review on the inflammatory drug target molecules in retinal and choroidal neovascularization. Annals of Eye Science, 6, Article 4.

ZHANG TING | Molecular Biology | Young Scientist Award

Ms. ZHANG TING | Molecular Biology | Young Scientist Award 

Teacher | China Kashi University | China

Dr. Zhang Ting is a distinguished Chinese biologist specializing in biological resources, nutritional biochemistry, and translational medicine. He earned his Bachelor of Nutrition, Master’s in Nutritional Studies, and Doctor of Biology from Hoseo University, South Korea, focusing on integrative nutrition, functional foods, and systems biology. His doctoral research explored neuropharmacological mechanisms in Alzheimer’s disease, stroke, diabetes, and obesity, combining molecular assays, rodent behavioral studies, and herbal medicine bioactivity. With over a decade of laboratory experience, Zhang has worked at Hoseo University and YEJUN Institute of Biological Sciences, leading experiments on metabolic regulation, neuroprotection, and chronic disease models while mentoring junior scientists and overseeing laboratory safety. His research interests include gut-brain axis modulation, herbal and fermented food interventions, metabolic disorders, and diet-based cognitive enhancement. Zhang bridges traditional medicinal knowledge with modern translational medicine, aiming to develop innovative strategies for chronic disease mitigation. His work has been widely cited and recognized internationally, reflecting his contributions to nutritional biochemistry, neuropharmacology, and functional food research, positioning him as a rising leader in integrative biomedical science.

Profile: ORCID

Featured Publications

Zhang, T., & Park, S. (n.d.). Network pharmacology-guided discovery of traditional Chinese medicine extracts for Alzheimer’s disease: Targeting neuroinflammation and gut-brain axis dysfunction. Int J Mol Sci, 26(17), 8545. Cited by 12.

Zhang, T., & Park, S. (n.d.). Energy intake-dependent genetic associations with obesity risk: BDNF Val66Met polymorphism and interactions with dietary bioactive compounds. Antioxidants, 14(2), 170.

Zhang, T., Yue, Y., Li, C., et al. (n.d.). Vagus nerve suppression in ischemic stroke by carotid artery occlusion: Implications for metabolic regulation, cognitive function, and gut microbiome in a gerbil model. Int J Mol Sci, 25, 7831.

Zhang, T., Li, C., Yue, Y., et al. (n.d.). Fermented red pepper paste (Kochujang) modulates glucose metabolism and gut microbiota in parasympathetic suppression: Network pharmacology and in vivo study. Food Biosci, 104531.

Zhang, T., Yue, Y., Jeong, S. J., et al. (n.d.). Improvement of estrogen deficiency symptoms by long-term fermented soybeans (Doenjang) rich in Bacillus species through modulating gut microbiota in estrogen-deficient rats. Foods, 12(6), 1143.

Laura Estrada | Molecular Biology | Best Researcher Award

Prof. Laura Estrada | Molecular Biology | Best Researcher Award 

Researcher | Physics department University of Buenos Aires | Argentina

Prof. Laura Cecilia Estrada is a physicist, educator, and researcher whose work bridges advanced optical microscopy, nanotechnology, and interdisciplinary biophysics. She serves as Adjunct Professor at the Department of Physics, University of Buenos Aires and Independent Researcher at CONICET, where she leads pioneering investigations in fluorescence spectroscopy, nanoimaging, and virus-host interactions. Estrada completed her academic training in physics at the University of Buenos Aires, earning her Licenciatura and Ph.D. with highest distinction, and later expanded her expertise as a postdoctoral researcher and group leader at the University of California, Irvine. Her research focuses on fluorescence-based techniques, single-particle tracking, and nano-optics applied to both fundamental physics and biomedical sciences, with special emphasis on dengue and Zika virus proteins. Alongside her scientific contributions, she has played key leadership roles in professional societies and gender equity initiatives. Her work has been recognized nationally and internationally, including awards from the International Commission for Optics, the Biophysical Society, and Argentina’s INNOVAR program. She has supervised numerous theses, mentored young scientists, and fostered international collaborations. With 35 publications, 325 citations, and an h-index of 9, Estrada exemplifies scientific rigor, innovation, and social commitment in advancing both knowledge and equity.

Profile: Scopus

Featured Publications

Sallaberry, I., & Estrada, L. Unraveling viral protein-host membrane interaction for dengue and Zika. Biophysical Journal.

Leon, A., Sallaberry, I., Estrada, L., & Scorticati, C. Non-synonymous SNPs within GPM6A impair hippocampal neuron development. Biochimica et Biophysica Acta, 1872(3). Cited by 2.

Salzman, V., & Estrada, L. Replicative lifespan determination of yeast using microfluidic chip. Biology Open, 13(11). Cited by 5.

Gaggioli, E., Estrada, L., & Bruno, O. Boundary layer structures in transport theory. Physical Review E, 110. Cited by 3.

Philipp, N., Gratton, E., & Estrada, L. Protein-membrane interaction via radial FCS. Methods and Applications in Fluorescence, 11(4). Cited by 12.

Gabriel, M., & Estrada, L. Dengue Virus Capsid Protein Dynamics in live cells. Scientific Reports, 10. Cited by 45.

Maria Camprubi Robles | Molecular Biology | Best Researcher Award

Dr. Maria Camprubi Robles | Molecular Biology | Best Researcher Award 

Research Scientist | Abbott Laboratories | Spain

Dr. Maria Camprubi is a highly accomplished Research Scientist with over a decade of dedicated service at Abbott Nutrition, specializing in molecular and cellular biology. With strong expertise in nutritional science, she has significantly contributed to the development of innovative products that address sarcopenia, chronic disease, and malnutrition across Europe, the Middle East, and Africa. She holds a Ph.D. in Molecular and Cellular Biology, where she built a strong foundation in cellular processes and metabolic regulation. Her academic training provided the expertise to bridge laboratory research with clinical nutrition, forming the cornerstone of her impactful scientific career.  Dr. Camprubi has worked at Abbott in the R&D department, leading projects that focus on the nutritional management of vulnerable populations. Her experience spans cross-functional collaborations, clinical trials, and translating research into practical solutions that improve health outcomes globally. Her research interests focus on nutrition metabolism to support muscle health, healthy aging, oncology, and diabetes. She aims to create evidence-based interventions that help prevent muscle decline, enhance recovery during chronic illnesses, and promote long-term well-being in aging populations. Dr. Camprubi has been recognized within Abbott for her leadership in advancing nutritional innovation. Her commitment to applying molecular and clinical insights to product development has positioned her as a leading scientist driving transformative changes in health and nutrition. She has authored impactful publications in peer-reviewed journals, contributing knowledge on nutritional metabolism, sarcopenia, and disease-related malnutrition. Her scientific contributions have achieved 1,276 citations by 1,194 documents, with 24 published documents and an h-index of 17, reflecting her influence in the scientific community and the value of her contributions to global health research.

Profile: Scopus

Featured Publications

A prospective, observational study of the effect of a high-calorie, high-protein oral nutritional supplement with HMB in an old and malnourished or at-risk-of-malnutrition population with hip fractures: A FracNut study. Nutrients, 16(8)

The vicious cycle of type 2 diabetes mellitus and skeletal muscle atrophy: Clinical, biochemical, and nutritional bases. Nutrients, 16(1), 172

Ingrid Tatiana Erazo | Molecular Biology | Molecular Biology Contribution Award

Dr. Ingrid Tatiana Erazo | Molecular Biology | Molecular Biology Contribution Award 

Scientific Research Lead | Memorial Sloan Kettering Cancer Center | United States

Dr. Ingrid Tatiana Erazo is a distinguished cancer researcher and Scientific Research Lead at Memorial Sloan Kettering Cancer Center (MSKCC) with extensive experience in translational oncology. She earned her PhD Summa Cum Laude in Biochemistry and Molecular Biology from the Autonomous University of Barcelona, where she pioneered research on the ERK5 signaling pathway. Her early postdoctoral work led to the discovery of the mechanism of action for ABTL-0812, an autophagy-inducing anticancer agent now in Phase III clinical trials. Over the past decade at MSKCC, she has advanced understanding of PRMT5 inhibition, therapeutic resistance, and biomarker development for precision oncology. She currently leads initiatives integrating liquid biopsy diagnostics for early cancer detection and is spearheading global health equity programs, including the creation of Brazil’s first national referral network for cancer clinical trials. Her work bridges molecular discoveries with clinical application, driving advancements in both targeted therapies and diagnostic tools.

Professional Profile

Scopus

ORCID

Google Scholar

Education

Dr. Erazo earned her PhD in Biochemistry and Molecular Biology from the Autonomous University of Barcelona, graduating Summa Cum Laude. Her doctoral research focused on dissecting the ERK5 signaling pathway and its role in cancer cell proliferation and survival. She used Tandem Affinity Purification to map ERK5’s interactome, uncovering novel noncanonical mechanisms and post-translational modifications such as SUMOylation that opened new therapeutic opportunities. Collaborating with Dana-Farber Cancer Institute at Harvard, she co-developed potent and selective ERK5 inhibitors, providing valuable pharmacological tools for cancer research. Her academic training combined molecular biology with translational oncology, giving her a unique foundation to move seamlessly from bench research to clinical applications. She also pursued advanced training in biomarker discovery and molecular diagnostics, enabling her to contribute to projects that merge fundamental discoveries with practical solutions for cancer detection, prognosis, and treatment optimization in a variety of clinical contexts.

Experience

Dr. Erazo’s professional career spans more than 20 completed research projects and leadership in multiple ongoing studies, covering molecular oncology, biomarker discovery, and therapeutic resistance. At MSKCC, she elucidated the mechanism of action of PRMT5 inhibitors and identified MUSASHI-2 as a driver of drug resistance in hematologic malignancies, leading to innovative combination therapy strategies. She developed liquid biopsy-based diagnostics for aggressive prostate cancers and integrated proteomic biomarkers into clinical research pipelines. In her earlier postdoctoral role at Ability Pharmaceuticals, she was instrumental in advancing ABTL-0812 to clinical trials by defining its mechanism and identifying relevant biomarkers. She has partnered with global pharmaceutical and biotech companies, including GlaxoSmithKline, Biodesix Inc., and Guardant Health. Her work also extends to global health initiatives, such as establishing Brazil’s first national referral network for cancer clinical trials with molecular profiling, aiming to address disparities in cancer care and ensure equitable access to precision oncology.

Research Interest

Dr. Erazo’s research focuses on cancer biology, mechanisms of drug resistance, biomarker discovery, and precision oncology. She has a particular interest in hematological malignancies and aggressive solid tumors where therapeutic resistance significantly impacts patient outcomes. Her work applies genome-wide CRISPR synthetic lethal screening, proteomics, and high-throughput drug screening to identify cancer vulnerabilities and inform new treatment strategies. She is advancing diagnostic methods through liquid biopsy technology, enabling early and non-invasive tumor detection and monitoring, with a focus on neuroendocrine prostate cancer. Dr. Erazo also addresses global health inequities by developing clinical trial networks in underrepresented regions and incorporating genetic ancestry into study designs to improve population-specific therapeutic approaches. By combining basic molecular research with translational and clinical applications, she aims to ensure that future cancer therapies and diagnostics are effective across diverse populations and accessible beyond high-resource healthcare settings.

Awards

Dr. Erazo’s scientific achievements have positioned her as a leader in translational cancer research and a nominee for the Molecular Biology Contribution Award. She is recognized for her groundbreaking work on ERK5 signaling, the clinical biomarker development for ABTL-0812, and the identification of MUSASHI-2 as a therapeutic resistance driver. Her contributions to liquid biopsy-based proteomic biomarkers for detecting lineage transformation in prostate cancer have advanced early diagnostic capabilities in precision oncology. She has also been a driving force behind the establishment of Brazil’s first national clinical trial referral network, demonstrating a strong commitment to global health equity. Her work, cited extensively in scientific literature, reflects both scientific rigor and real-world clinical impact. These accomplishments highlight her role as both a laboratory innovator and a global health strategist, whose research has shaped cancer treatment strategies and advanced diagnostic development on an international scale.

Top Noted Publications

Dr. Erazo has authored over 20 peer-reviewed articles in high-impact journals, including Annals of Oncology, Nature Communications, Autophagy, and Clinical Cancer Research. Her research spans mechanistic cancer biology, drug development, and biomarker-driven clinical applications. She has contributed to significant discoveries such as mapping the ERK5 interactome, elucidating the mechanism of action for ABTL-0812, and identifying resistance biomarkers for hematological malignancies. Her publications often emerge from collaborative projects that integrate molecular biology, pharmacology, and clinical trial data, reflecting her multidisciplinary approach to advancing oncology research. The high citation count of her work underscores its influence and the adoption of her findings by researchers and clinicians worldwide. Her studies have informed clinical trial design, therapeutic development, and diagnostic tool implementation, bridging the gap between basic science and patient-centered outcomes in cancer care.

Selected Publications (Single-Line Format)

Title: Erazo T, et al. The new antitumor drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels
Journal: Nature Communications
Cited by 312

Title: Erazo T, et al. Inhibition of PRMT5 in lymphomas overcomes therapeutic resistance via MUSASHI-2 modulation
Journal: Clinical Cancer Research
Cited by 145

Title: Erazo T, et al. ERK5 kinase activity-independent functions in cancer: implications for drug development
Journal: Autophagy
Cited by 110

Title: Erazo T, et al. Blood-based proteomic biomarkers for early detection of lineage plasticity in prostate cancer
Journal: Annals of Oncology
Cited by 35

Title: Erazo T, et al. High-throughput screening of FDA-approved drugs for novel therapeutic combinations in lymphoma
Journal: Molecular Oncology
Cited by 28

Conclusion

Dr. Ingrid Tatiana Erazo’s pioneering research, translational breakthroughs, and commitment to equitable precision oncology position her as an outstanding candidate for the Research for Molecular Biology Contribution Award. Her work exemplifies how rigorous molecular biology can directly shape novel therapeutics, diagnostics, and healthcare systems globally. Awarding her would recognize not only her individual achievements but also her vision for transforming cancer care through innovation and inclusivity.

 

Guoyin Liu | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Guoyin Liu | Molecular Biology | Best Researcher Award 

Attending physician and associate professor, at Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.

Dr. Guoyin Liu is an accomplished attending physician and associate professor at Jinling Hospital, Nanjing University, renowned for his expertise in orthopedics, inflammatory signaling, and regenerative medicine. Holding a PhD from Nanjing Medical University, he specializes in endoplasmic reticulum (ER) molecular chaperones such as GRP78/Bip and their role in critical orthopedic conditions including rheumatoid arthritis, osteoarthritis, chronic wounds, and periprosthetic osteolysis. Beyond molecular research, he pioneers innovative treatments like extracorporeal shock wave therapy, needle-knife therapy, and restorative laminoplasty techniques for spinal reconstruction. His translational research bridges basic science with clinical applications, contributing to novel interventions for musculoskeletal disorders. With an impressive portfolio of high-impact publications, key research grants, patents, and editorial board memberships, Dr. Liu exemplifies a commitment to advancing orthopedic science and patient care. His innovative contributions continue to shape the future of orthopedic diagnostics and treatments, fostering breakthroughs in bone regeneration and inflammatory disease management.

Professional Profile

Scopus

ORCID

🎓 Education 

Dr. Liu completed his PhD at Nanjing Medical University, focusing on the molecular mechanisms underlying inflammatory bone loss and tissue degeneration. His academic foundation integrates basic medical sciences, clinical orthopedics, and bioengineering approaches, enabling him to investigate complex orthopedic diseases at the cellular and molecular levels. During his training, he mastered advanced experimental techniques, including finite element biomechanical analysis, tissue engineering methodologies, and translational clinical trials. Dr. Liu expanded his academic horizon through specialized workshops in regenerative medicine, musculoskeletal biomechanics, and immunomodulation therapies. His education laid the groundwork for his pioneering research on GRP78/Bip signaling pathways in chronic musculoskeletal diseases. By blending clinical insights with experimental rigor, he has become a leading voice in developing innovative therapies for orthopedic patients. His educational journey reflects a seamless integration of theory and practice, empowering him to address both clinical challenges and fundamental biomedical questions with cutting-edge research approaches.

💼 Experience 

With over 15 years of combined clinical and research experience, Dr. Guoyin Liu has established himself as a leading expert in orthopedic surgery, translational research, and regenerative medicine. As an Attending Physician and Associate Professor at Jinling Hospital, he manages complex cases such as spinal deformities, chronic joint diseases, and osteolytic conditions. His academic tenure includes supervising multidisciplinary research projects funded by National Natural Science Foundation of China and provincial grants focusing on inflammatory pathways and bone regeneration. He has innovated surgical techniques like restorative laminoplasty with miniplate fixation, which has improved postoperative spinal stability and patient recovery outcomes. His extensive clinical experience is complemented by editorial board appointments in reputed international journals, reflecting his scientific leadership. Dr. Liu’s dual role as a clinician and researcher enables him to directly translate benchside discoveries into bedside applications, ensuring tangible benefits for patients suffering from chronic orthopedic disorders.

🔬 Research Interests 

Dr. Liu’s research is centered on cellular stress responses and inflammatory pathways in orthopedic diseases, with a special focus on endoplasmic reticulum molecular chaperones (GRP78/Bip) and their dual intracellular and extracellular roles. He investigates how particle-induced osteolysis, rheumatoid arthritis, and intervertebral disc degeneration are driven by inflammatory cascades, aiming to develop targeted molecular therapies. Another significant area of his research explores chemical chaperones like 4-Phenylbutyrate, which mitigate ER stress and improve bone regeneration. Dr. Liu also advances biomechanical engineering solutions, analyzing finite element models to improve spinal fixation techniques. Additionally, he integrates shockwave therapy, corticosteroid injections, and minimally invasive interventions for managing chronic orthopedic pain. His translational approach bridges basic science, bioengineering, and clinical orthopedics, leading to innovative strategies that reduce surgical complications and improve musculoskeletal repair. Through his research, Dr. Liu aims to redefine the diagnosis, prevention, and treatment of bone and joint diseases in aging populations.

🏆 Awards & Honors 

Dr. Liu has received numerous academic and clinical recognitions for his groundbreaking work in orthopedics. He was honored with the Third Prize for Military Science & Technology Progress for elucidating the TIM3 signaling pathway in osteoarthritis during military training-related injuries. Additionally, he received the Third Award for Nanjing Science & Technology Progress for identifying the role of recombinant BMP-1 in periprosthetic osteolysis. His work has been consistently supported by prestigious national grants, including multiple NSFC-funded projects totaling over ¥2 million, demonstrating the significance and impact of his research. Beyond awards, his appointment to editorial boards of leading orthopedic and bioengineering journals highlights his global recognition in the field. Dr. Liu’s innovative surgical methods, such as restorative laminoplasty with H-shaped miniplates, have been acknowledged as transformative in spinal reconstruction. These accolades collectively recognize his outstanding contribution to orthopedic research, surgical innovation, and patient care.

📚 Top Noted Publications 

Dr. Liu’s publications span orthopedic biomechanics, inflammatory pathways, and regenerative medicine, widely cited in the global research community. Key works include:

🛠️ Biomechanical Stability of Miniplates in Restorative Laminoplasty

Title: Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study
Authors: Guoyin Liu, Weiqian Huang, Nannan Leng, Peng He, Xin Li, Muliang Lin, Zhonghua Lian, Yong Wang, Jianmin Chen, Weihua Cai
Journal: Bioengineering (Basel)
Year / Volume / Issue: 2024; 11(5):519
DOI: 10.3390/bioengineering11050519 PubMed+15MDPI+15ResearchGate+15
Highlights: Used a finite element model (L2–L4) to compare H‑shaped, L‑shaped, and two‑hole miniplates. The H‑shaped design showed superior stability, especially in axial rotation and flexion/extension PubMedMDPI.

Biomechanical Reconstruction of the Posterior Complex in Laminoplasty

Title: Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates
Authors: Jianmin Chen, Guoyin Liu, Tianyi Bao, Yuansheng Xu, Hu Luo, Yu Wu, Dawei Cai, Feng Qin, Jianning Zhao
Journal: BMC Musculoskeletal Disorders
Year / Volume / Article: 2023; 24(1):298
DOI: 10.1186/s12891-023-06380-3 PubMedOUCI
Highlights: Cadaveric 3D-printed L4 models under static/dynamic loading. H‑shaped miniplates outperformed L‑shaped and two-hole systems, preventing lamina collapse or plate breakage PubMedResearchGate.

Macrophage Apoptosis Pathways in Periprosthetic Osteolysis

Title: Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthetic osteolysis
Journal: APMIS
Year: 2017
Details: Demonstrates that wear particles at implant interfaces accelerate macrophage apoptosis via ER-stress and mitochondrial dysfunction, which exacerbates osteolysis PubMedPhysiology Journals.

Endoplasmic Reticulum Stress and Osteolysis

Title: Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis
Authors: Guoyin Liu, Naicheng Liu, Yuansheng Xu, Yunfan Ti, Jiangning Chen, Jianmin Chen, Junfeng Zhang, Jianning Zhao
Journal: Cell and Tissue Research
Year / Issue / Pages: 2016 Feb; 363(2):427–447
DOI: 10.1007/s00441-015-2205-9 PubMedSpringerLink
Highlights: Particle debris induces ER stress in macrophages, triggering IRE1α, GRP78/BiP, NF‑κB pathways, elevating pro-inflammatory cytokines (TNF‑α, IL‑1β, IL‑6). 4‑PBA effectively reduced ER-stress and osteolysis in murine models .

Conclusion

Dr. Guoyin Liu’s outstanding contributions to orthopedic research, innovative therapies, and patented medical devices make him a highly suitable candidate for the Best Researcher Award. His work bridges basic molecular research with clinical applications, significantly improving diagnosis, treatment, and rehabilitation of complex musculoskeletal disorders.

Galal Yahya | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Galal Yahya | Molecular Biology | Best Researcher Award

Faculty of Pharmacy, at Zagazig University, Egypt.

Dr. Galal Yahya is an Egyptian microbiologist and immunologist specializing in infection biology and molecular microbiology. Currently an Associate Professor at Zagazig University, Egypt, he has also held prestigious research positions in Spain and Germany. With a Ph.D. in Biomedicine and Molecular Cell Biology from the University of Barcelona (IBMB-CSIC), his research focuses on antimicrobial resistance, infection biology, and immunology. Dr. Yahya has contributed significantly to understanding microbial pathogenesis and innovative treatment strategies. He has been awarded the Alexander von Humboldt Postdoctoral Fellowship and has worked extensively in molecular genetics and microbiology. Fluent in Arabic and English, with proficiency in Spanish and French, he has collaborated internationally on cutting-edge research. His publications in high-impact journals reflect his dedication to scientific excellence. Currently based in Barcelona, Spain, Dr. Yahya continues to advance microbiology and immunology through his research and academic contributions.

Professional Profile

Scopus

ORCID

Education 🎓

Dr. Yahya’s academic journey is distinguished by excellence and international recognition. He earned his B.Sc. in Pharmaceutical Science from Zagazig University, Egypt, in 2006, where he graduated with honors. In 2011, he obtained a Master’s degree (DEA) in Biochemistry and Molecular Biology from the University of Lleida, Spain, achieving the highest distinction (Excellent cum laude). His Ph.D. in Biomedicine and Molecular Cell Biology of Cancer was awarded in 2016 by the University of Barcelona (IBMB-CSIC), also with the highest honor. His doctoral research provided groundbreaking insights into microbial cell cycle regulation. His educational background laid a strong foundation for his specialization in infection biology, microbiology, and immunology. His academic achievements reflect his deep commitment to scientific inquiry and biomedical advancements, shaping his career as a leading researcher in microbiology.

Professional and Research Experience 🔬

Dr. Yahya’s professional career spans leading research institutions across Egypt, Spain, and Germany. He began as a Demonstrator (2007-2009) at the Department of Microbiology and Immunology, Zagazig University. His Ph.D. research took place in Marti Aldea Lab at the University of Lleida and IBMB-CSIC in Barcelona (2009-2016), where he explored microbial cell biology. In 2016, he became a Lecturer at Zagazig University and later secured the prestigious Alexander von Humboldt Postdoctoral Fellowship (2017-2021) at the Technical University of Kaiserslautern, Germany, focusing on molecular genetics. Since 2021, he has been an Associate Professor at Zagazig University, contributing to microbiology research and education. In 2023-2024, he served as a Senior Postdoctoral Investigator at IBMB-CSIC, Barcelona, furthering his expertise in infection biology and antibiotic resistance. His career reflects a strong dedication to advancing microbiological research through international collaboration.

Research Interests 🔍

Dr. Yahya’s research focuses on microbial infections, antimicrobial resistance, and immunology. His work explores innovative antifungal and antibacterial therapies, phage therapy, and biofilm inhibition strategies. He has a keen interest in host-pathogen interactions, molecular microbiology, and infection control mechanisms. His studies on phage-antibiotic synergy have paved the way for alternative treatments against multidrug-resistant bacteria. He is also involved in biotechnological applications, such as using microbes for self-healing concrete and sustainable environmental solutions. His research extends to molecular genetics and cell cycle regulation, providing insights into bacterial adaptation and survival strategies. Dr. Yahya’s interdisciplinary approach integrates microbiology, pharmacology, and biotechnology, addressing global health challenges. His expertise contributes to the development of novel therapeutic interventions to combat infectious diseases, making significant strides in microbiological research.

Awards and Recognitions 🏆

Dr. Yahya has received several prestigious awards recognizing his scientific contributions. Notably, he was awarded the Alexander von Humboldt Postdoctoral Fellowship (2017-2021) in Germany, a testament to his outstanding research in molecular microbiology. His Ph.D. dissertation earned Excellent cum laude distinction from the University of Barcelona, highlighting his academic excellence. He has been acknowledged for his contributions to antimicrobial research, with multiple grants supporting his investigations into microbial pathogenesis. Additionally, his research on phage therapy and antibiotic resistance has been recognized at international conferences. His work continues to shape the field of microbiology, earning him a place among leading researchers in infection biology. With numerous accolades, Dr. Yahya remains committed to advancing biomedical science and developing innovative solutions for infectious diseases.

Top Noted Publications 📚

Dr. Yahya has authored numerous research articles in high-impact journals, covering antimicrobial resistance, infection biology, and microbiological innovations. Some of his key publications include:

  • Innovative Antifungal Therapy: In Vivo Evaluation of 3-Ethyl-6,7-Dihydroxy-2-Phenyl-Chromen-4-One Purified from Alpinia officinarum on Cryptococcus neoformans
    Journal: International Immunopharmacology
    Year: 2025
    Summary: This study investigates the antifungal efficacy of a compound isolated from Alpinia officinarum against Cryptococcus neoformans in vivo, suggesting potential therapeutic applications.

  • Comprehensive Review for Aflatoxin Detoxification with Special Attention to Cold Plasma Treatment
    Journal: Mycotoxin Research
    Year: 2025
    Summary: This review discusses various aflatoxin detoxification methods, emphasizing the emerging role of cold plasma treatment as an effective strategy.

  • Utilizing Phage-Antibiotic Synergy in Murine Bacteremia Model to Combat Multidrug-Resistant Enterococcus faecalis
    Journal: Microbial Biotechnology
    Year: 2025
    Summary: The research explores the combined use of bacteriophages and antibiotics to treat infections caused by multidrug-resistant Enterococcus faecalis in a mouse model, highlighting a potential therapeutic approach.

  • Silk Fibroin/Gelatin Electrospun Nanofibrous Dressing Loaded with Roxadustat Accelerates Wound Healing in Diabetic Rats
    Journal: Journal of Drug Delivery Science and Technology
    Year: 2025
    Summary: This study evaluates a novel wound dressing composed of silk fibroin and gelatin nanofibers loaded with roxadustat, demonstrating enhanced wound healing in diabetic rat models.

  • Defeating Biofilm Formed by Bacterial Isolates Using Vanillin and Plant Essential Oils
    Journal: Future Journal of Pharmaceutical Sciences
    Year: 2024
    Summary: The article examines the effectiveness of vanillin and various plant essential oils in disrupting bacterial biofilms, offering insights into alternative antimicrobial strategies.

  • Carbapenem-Resistant Acinetobacter baumannii Lytic Phage Therapy in a Mouse Model
    Journal: Future Journal of Pharmaceutical Sciences
    Year: 2024
    Summary: This research assesses the therapeutic potential of lytic bacteriophages against carbapenem-resistant Acinetobacter baumannii infections in mice, indicating promising avenues for phage therapy.

  • Bacteria-Powered Self-Healing Concrete: Breakthroughs and Challenges
    Journal: Journal of Industrial Microbiology & Biotechnology
    Year: 2024
    Summary: The paper reviews advancements in self-healing concrete technology utilizing bacteria, discussing recent breakthroughs and ongoing challenges in the field.

  • Eco-Smart Biocontrol Strategies Utilizing Potent Microbes
    Journal: Biotechnology Reports
    Year: 2024
    Summary: This article explores environmentally friendly biocontrol methods employing effective microbial agents, highlighting sustainable approaches to pest and disease management.

  • Advances in Metal/Metal Oxide Nanoparticles for Antibiotic Resistance
    Journal: International Journal of Molecular Sciences
    Year: 2024
    Summary: The study delves into the development of metal and metal oxide nanoparticles as novel solutions to combat antibiotic-resistant bacteria, presenting recent progress and applications.

  • Mitigating Diabetes-Related Complications: Metformin with Cholecalciferol and Taurine Supplementation
    Journal: World Journal of Diabetes
    Year: 2024
    Summary: This research investigates the combined effects of metformin, cholecalciferol (vitamin D), and taurine supplementation in reducing complications associated with diabetes, suggesting potential therapeutic benefits.

Conclusion

Galal Yahya is a highly qualified candidate for the Best Researcher Award, given his strong academic background, international research collaborations, and significant contributions to microbiology and immunology. His publication record and research impact are impressive. Strengthening his leadership in grants, industry applications, and mentorship would further solidify his candidacy.