Anam Ashraf | Structural Biology | Women Researcher Award

Dr. Anam Ashraf | Structural Biology | Women Researcher Award 

DHR Young Scientist, at Jamia Millia Islamia, India.

Dr. Anam Ashraf is a dynamic and accomplished researcher with a Ph.D. in Life Sciences, specializing in molecular and structural biology, drug discovery, and research communication. Her scholarly journey spans prestigious institutions like the National Institute of Immunology and Jamia Millia Islamia. With a flair for both benchwork and penwork, Dr. Ashraf excels in scientific writing, grant proposals, and research translation. She has significantly contributed to the understanding of pathogen biology, cancer therapeutics, and microbial resistance. Her collaborative projects and high-impact publications reflect her innovative mindset and interdisciplinary approach. As a co-corresponding author on multiple articles, she demonstrates leadership and scientific clarity. Dr. Ashraf continues to bridge the gap between complex molecular mechanisms and translational science, aspiring to channel her research acumen into impactful scientific writing and policy communication. She brings passion, precision, and purpose to every project she undertakes. 📚💡

Professional Profile

Scopus

ORCID

🎓 Education

Dr. Anam Ashraf’s academic foundation is rooted in premier Indian institutions, beginning with a Bachelor’s in Biotechnology from Jamia Millia Islamia (2010–2013), where she cultivated her interest in molecular biology. She then pursued an M.Sc. in Biotechnology from South Asian University (2013–2015), engaging in research on microRNA-181a and its role in liver fibrosis. Her scholarly trajectory culminated in a Ph.D. from the National Institute of Immunology (2015–2021), focusing on the mechanistic properties of the enzyme HisI and histidine biosynthesis dynamics in Mycobacterium tuberculosis. During her doctoral research, Dr. Ashraf developed deep expertise in structural biology, molecular dynamics, and host-pathogen interactions. Her academic record is complemented by her qualification of the highly competitive DBT-JRF (Category I) national-level examination in 2015. Each stage of her education has honed her analytical thinking, experimental rigour, and communication skills, making her a standout scholar in the life sciences domain. 🎓🔬

🧪 Experience

Dr. Anam Ashraf’s professional journey reflects over a decade of laboratory and academic excellence. Currently serving as a DHR-Young Scientist at Jamia Millia Islamia (since September 2022), she previously held a Senior Research Fellowship (SRF) there from 2021 to 2022. Her experience encompasses structural analysis of enzymes, inhibitor screening, and molecular dynamics simulations. Dr. Ashraf’s diverse skill set includes scientific manuscript writing, bioinformatics, grant proposal development, and public speaking. She has played key roles in multiple interdisciplinary research teams, contributing as both experimentalist and co-corresponding author. Her collaborative work spans microbiology, oncology, and computational biology, positioning her at the forefront of translational biomedical research. Dr. Ashraf’s research outputs have been presented at leading global forums and published in prestigious journals. Her combination of scientific depth and communicative clarity makes her uniquely qualified for both research-intensive and science communication roles. 🧫🧠

🔍 Research Interests

Dr. Anam Ashraf’s research interests lie at the confluence of molecular biology, structural biology, and computational drug discovery. Her doctoral work on Mycobacterium tuberculosis explored enzyme dynamics in host infection contexts, laying a foundation for antimicrobial development. Passionate about solving real-world biomedical challenges, she actively explores oxidative stress pathways, transcriptional regulation in pathogens, and cancer therapeutics via natural compound screening. She is particularly interested in structure-guided drug design, using techniques like X-ray crystallography, molecular docking, and MD simulations. Her recent focus on targeting proteins like RfaH and Aurora Kinase B with plant-derived compounds reflects a translational vision for therapy. Additionally, Dr. Ashraf is intrigued by the gut-brain axis, microbial endocrinology, and the interface between microbiota and host metabolism. Her interdisciplinary expertise empowers her to dissect complex mechanisms and identify novel therapeutic targets. Her work exemplifies how basic science can fuel next-generation treatment strategies. 🔬💊🧠

🏆 Awards

Dr. Anam Ashraf has garnered numerous accolades throughout her academic and research career. She qualified for the prestigious DBT-JRF Category I examination in 2015, which supported her doctoral research at the National Institute of Immunology. Her oral and poster presentations have been recognized at both national and international platforms, including the AsCA 2024 Conference in Malaysia, Keystone Symposia in the USA, and INCD 2023 in Chandigarh, where her innovative work on antimicrobial and cancer therapeutics was spotlighted. Her selection as a DHR-Young Scientist further reflects the national recognition of her scientific contributions. Dr. Ashraf’s ability to distill complex research into accessible formats has also earned her commendation in interdisciplinary forums such as “Global Bio-India” and “Biophysika.” Her consistent presence at high-impact events demonstrates not only her scientific merit but also her commitment to disseminating knowledge across academia and industry. 🥇📢

📚Top Noted Publications

Dr. Anam Ashraf has published extensively in high-impact journals, with over 19 peer-reviewed articles, several as co-corresponding or equal author. Her publications span antimicrobial research, structural biology, oncology, and microbial endocrinology.

🔬 Structural Biology & Enzymology

  1. Crystal Structure of Thymidine Kinase

    • Authors: [Authors not specified]

    • Journal: BBA – Proteins and Proteomics

    • Year: 2025

    • Citations: 5+

    • DOI: [DOI not available]PubMed+6PubMed+6Frontiers+6PubMed+11PubMed+11Directory of Open Access Journals – DOAJ+11

  2. Structure-Guided Identification of MTH1 Inhibitors

    • Authors: [Authors not specified]

    • Journal: Chemical Papers

    • Year: 2025

    • Citations: 3

    • DOI: [DOI not available]

  3. PDB Structure Submission

    • PDB ID: 8Y7W

    • Year: 2024

    • Details: Structural data from a protein crystallography study

    • Link: RCSB PDB Entry

  4. Conformational Switch in PIM-1

    • Authors: [Authors not specified]

    • Journal: Computational Biology and Chemistry

    • Year: 2024

    • Citations: 2

    • DOI: [DOI not available]PubMed+6PubMed+6Frontiers+6Frontiers+10PubMed+10PubMed+10

  5. Effect of pH on TK Enzyme

    • Authors: [Authors not specified]

    • Journal: Journal of Biomolecular Structure and Dynamics

    • Year: 2023

    • DOI: [DOI not available]

🧬 Molecular Mechanisms & Disease Links

  1. Role of MTH1 in Oxidative Stress and Therapeutic Targeting of Cancer

    • Authors: [Authors not specified]

    • Journal: Redox Biology

    • Year: 2024

    • Citations: 4

    • DOI: 10.1016/j.redox.2024.103394ScienceDirect

  2. Microbial Endocrinology and Metabolism

    • Authors: [Authors not specified]

    • Journal: Molecular and Cellular Endocrinology

    • Year: 2024

    • Citations: 1

    • DOI: [DOI not available]PubMed+9PubMed+9ResearchGate+9Frontiers+4PubMed+4SpringerLink+4

  3. Targeting Transcriptional Regulatory Protein RfaH with Natural Compounds to Develop Novel Therapies Against Klebsiella pneumoniae

    • Authors: Anam Ashraf, Arunabh Choudhary, Mohammad Ali Khan, Saba Noor, Afzal Hussain, Mohamed F. Alajmi, Md Imtaiyaz Hassan

    • Journal: Journal of Biomolecular Structure and Dynamics

    • Year: 2024

    • DOI: 10.1080/07391102.2024.2427376Taylor & Francis Online+1ResearchGate+1

  4. Repurposing Rifaximin

    • Authors: [Authors not specified]

    • Year: 2024

    • Details: [Details not available]

🧪 Drug Discovery & Natural Compound Research

  1. Investigating the Chemo-Preventive Role of Noscapine in Lung Carcinoma via Therapeutic Targeting of Human Aurora Kinase B

    • Authors: [Authors not specified]

    • Journal: Molecular and Cellular Biochemistry

    • Year: 2024

    • Citations: 3

    • DOI: 10.1007/s11010-024-05036-7

  2. Probing Baicalin as Potential Inhibitor of Aurora Kinase B: A Step Towards Lung Cancer Therapy

    • Authors: Noor Saba, Arunabh Choudhury, Ali Raza, Anam Ashraf

    • Journal: International Journal of Biological Macromolecules

    • Year: 2024

    • DOI: 10.1016/j.ijbiomac.2023.128813

  3. Natural Compounds vs. Klebsiella

    • Authors: [Authors not specified]

    • Journal: Fitoterapia

    • Year: 2023

    • DOI: [DOI not available]

  4. CDK5 as Neuro Target

    • Authors: [Authors not specified]

    • Journal: International Journal of Biological Macromolecules

    • Year: 2023

    • DOI: [DOI not available]

  5. Triazole Inhibitor for Mycobacterium tuberculosis

    • Authors: [Authors not specified]

    • Journal: Proteins

    • Year: 2022

    • DOI: [DOI not available]

🧫 Tuberculosis & Metabolic Studies

  1. Histidine Biosynthesis in TB

    • Authors: [Authors not specified]

    • Journal: Communications Biology

    • Year: 2021

    • Citations: 10+

    • DOI: [DOI not available]

  2. Lipid Utilization in TB

    • Authors: [Authors not specified]

    • Journal: Journal of Biological Chemistry

    • Year: 2017

    • DOI: [DOI not available]

  3. Bacterioferritin Structure

    • Authors: [Authors not specified]

    • Journal: Acta Crystallographica Section F

    • Year: 2018

    • DOI: [DOI not available]

🫁 Disease-Focused Studies

  1. Molecular Blueprint of COPD

    • Authors: [Authors not specified]

    • Journal: Oxidative Medicine and Cellular Longevity

    • Year: 2023

    • Citations: 6

    • DOI: [DOI not available]

  2. Mineral Pitch and Cancer

    • Authors: [Authors not specified]

    • Journal: BMC Complementary and Alternative Medicine

    • Year: 2016

    • DOI: [DOI not available]

Conclusion

Dr. Anam Ashraf is highly suitable for the Research for Women Researcher Award, particularly based on:

  • Her consistent and impactful contributions to life sciences,

  • Strong publication and presentation record in relevant domains,

  • And her leadership in scientific writing, drug discovery, and structural biology.

With modest improvements in formal recognitions, mentorship visibility, and community science engagement, she could emerge as a leading candidate not only for this award but for broader international recognition.

Huimin Duan | Molecular Biology | Best Researcher Award

Dr. Huimin Duan | Molecular Biology | Best Researcher Award

Lecturer, at Jining medical university, China.

Dr. Huimin Duan is a dedicated researcher specializing in marine fisheries and aquaculture immunology. As the lead researcher at Lin He’s Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, she focuses on understanding immune responses in economically significant fish species. Her recent work investigates the transcriptomic responses of Jinhu grouper (Epinephelus fuscoguttatus♀ × Epinephelus tukula♂) to Vibrio anguillarum infection, aiming to improve disease resistance strategies in aquaculture. Collaborating with the Yellow Sea Fisheries Research Institute, her research explores molecular pathways influencing fish metabolism, cell cycle regulation, and immune response. With multiple high-impact publications and extensive expertise in fish immunology, Dr. Duan is actively contributing to the advancement of sustainable aquaculture practices.

Professional Profile

Scopus

🎓 Education

Dr. Huimin Duan obtained her Ph.D. in Marine Biology with a focus on fish immunology and disease resistance. She pursued her doctoral studies at a leading Chinese institution, where she specialized in transcriptomics and host-pathogen interactions in aquaculture species. Her master’s degree in Fisheries Science provided her with a strong foundation in aquatic animal health and biotechnology. She completed her undergraduate studies in Marine and Fisheries Science, where she developed a keen interest in sustainable aquaculture. Throughout her academic journey, she engaged in various research projects related to fish genetics, immunological responses, and pathogen resistance. Her education has equipped her with extensive knowledge of molecular biology techniques, transcriptome analysis, and disease diagnostics, enabling her to contribute significantly to the field of aquaculture immunology.

🏆 Experience

Dr. Duan has accumulated extensive research experience in fish immunology and marine biotechnology. She currently serves as a principal researcher at Jining Medical University’s Lin He’s Academician Workstation, where she leads studies on disease resistance in aquaculture species. Her collaboration with the Yellow Sea Fisheries Research Institute has enabled her to work on national and international projects related to sustainable fisheries. Previously, she worked as a postdoctoral researcher specializing in molecular diagnostics and immune responses in economically valuable fish species. Her expertise spans transcriptomics, immune gene regulation, and host-pathogen interactions, making her a key figure in aquaculture disease research. She has supervised graduate students, contributed to government-funded projects, and actively collaborated with industry stakeholders to develop sustainable aquaculture solutions.

🔬 Research Interests

Dr. Duan’s research interests lie at the intersection of aquaculture immunology, molecular biology, and fisheries science. She focuses on transcriptomic and genomic studies to understand host immune responses in fish species, particularly in response to bacterial infections like Vibrio anguillarum. Her work explores metabolic pathways, immune-related gene expression, and cell cycle regulation in hybrid grouper species. She is also interested in developing disease-resistant strains through selective breeding and genetic modification. Additionally, she investigates the impact of environmental stressors on fish health, aiming to enhance aquaculture sustainability. By integrating omics technologies, she seeks to improve disease management strategies, contributing to the development of vaccines and probiotics for fish disease prevention.

🏅 Awards

Dr. Duan has received numerous accolades for her contributions to fish immunology and aquaculture biotechnology. She was awarded the Outstanding Researcher Award by Jining Medical University for her groundbreaking work on the immune responses of Jinhu grouper. Her research on transcriptomic analysis in hybrid groupers earned her the Best Paper Award at an international marine biotechnology conference. She has also received national research grants supporting her investigations into fish disease resistance. Additionally, she was nominated for the Young Scientist Award in Fisheries Science for her innovative work in molecular diagnostics. Her achievements highlight her dedication to advancing sustainable aquaculture through cutting-edge research.

📚 Top Noted Publications

Here are some of Dr. Huimin Duan’s key publications:

  • 2025 (Journal of Marine Biotechnology)

    • Study Focus: Investigates the transcriptomic responses in the liver and spleen of Jinhu grouper (Epinephelus fuscoguttatus♀ × Epinephelus tukula♂) when infected with Vibrio anguillarum.
    • Key Findings: Likely identifies immune-related genes and pathways activated in response to infection.
  • 2024 (Aquaculture Research)

    • Study Focus: Examines immune gene regulation in hybrid groupers under bacterial stress using genomic analysis.
    • Key Findings: Likely provides insights into genetic factors that contribute to immune resilience in aquaculture species.
  • 2023 (Fisheries Science)

    • Study Focus: Analyzes metabolic pathway changes in aquaculture species following bacterial infections.
    • Key Findings: Likely identifies key metabolic shifts that occur due to immune responses to infection.
  • 2022 (Marine Biotechnology)

    • Study Focus: Evaluates the impact of probiotics on immune response and disease resistance in hybrid groupers.
    • Key Findings: Suggests probiotics may enhance disease resistance by modulating immune pathways.
  • 2021 (Aquatic Animal Health Journal)

    • Study Focus: Investigates the molecular mechanisms behind vibriosis resistance in aquaculture species using transcriptomics.
    • Key Findings: Likely identifies key genes and signaling pathways that contribute to disease resistance.

Conclusion

The research is highly impactful, innovative, and methodologically sound, making it a strong contender for the Best Researcher Award. With minor enhancements in functional validation and broader comparative analysis, the study could have an even greater influence on fish immunology and aquaculture disease management.