Guoyin Liu | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Guoyin Liu | Molecular Biology | Best Researcher Award 

Attending physician and associate professor, at Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.

Dr. Guoyin Liu is an accomplished attending physician and associate professor at Jinling Hospital, Nanjing University, renowned for his expertise in orthopedics, inflammatory signaling, and regenerative medicine. Holding a PhD from Nanjing Medical University, he specializes in endoplasmic reticulum (ER) molecular chaperones such as GRP78/Bip and their role in critical orthopedic conditions including rheumatoid arthritis, osteoarthritis, chronic wounds, and periprosthetic osteolysis. Beyond molecular research, he pioneers innovative treatments like extracorporeal shock wave therapy, needle-knife therapy, and restorative laminoplasty techniques for spinal reconstruction. His translational research bridges basic science with clinical applications, contributing to novel interventions for musculoskeletal disorders. With an impressive portfolio of high-impact publications, key research grants, patents, and editorial board memberships, Dr. Liu exemplifies a commitment to advancing orthopedic science and patient care. His innovative contributions continue to shape the future of orthopedic diagnostics and treatments, fostering breakthroughs in bone regeneration and inflammatory disease management.

Professional Profile

Scopus

ORCID

🎓 Education 

Dr. Liu completed his PhD at Nanjing Medical University, focusing on the molecular mechanisms underlying inflammatory bone loss and tissue degeneration. His academic foundation integrates basic medical sciences, clinical orthopedics, and bioengineering approaches, enabling him to investigate complex orthopedic diseases at the cellular and molecular levels. During his training, he mastered advanced experimental techniques, including finite element biomechanical analysis, tissue engineering methodologies, and translational clinical trials. Dr. Liu expanded his academic horizon through specialized workshops in regenerative medicine, musculoskeletal biomechanics, and immunomodulation therapies. His education laid the groundwork for his pioneering research on GRP78/Bip signaling pathways in chronic musculoskeletal diseases. By blending clinical insights with experimental rigor, he has become a leading voice in developing innovative therapies for orthopedic patients. His educational journey reflects a seamless integration of theory and practice, empowering him to address both clinical challenges and fundamental biomedical questions with cutting-edge research approaches.

💼 Experience 

With over 15 years of combined clinical and research experience, Dr. Guoyin Liu has established himself as a leading expert in orthopedic surgery, translational research, and regenerative medicine. As an Attending Physician and Associate Professor at Jinling Hospital, he manages complex cases such as spinal deformities, chronic joint diseases, and osteolytic conditions. His academic tenure includes supervising multidisciplinary research projects funded by National Natural Science Foundation of China and provincial grants focusing on inflammatory pathways and bone regeneration. He has innovated surgical techniques like restorative laminoplasty with miniplate fixation, which has improved postoperative spinal stability and patient recovery outcomes. His extensive clinical experience is complemented by editorial board appointments in reputed international journals, reflecting his scientific leadership. Dr. Liu’s dual role as a clinician and researcher enables him to directly translate benchside discoveries into bedside applications, ensuring tangible benefits for patients suffering from chronic orthopedic disorders.

🔬 Research Interests 

Dr. Liu’s research is centered on cellular stress responses and inflammatory pathways in orthopedic diseases, with a special focus on endoplasmic reticulum molecular chaperones (GRP78/Bip) and their dual intracellular and extracellular roles. He investigates how particle-induced osteolysis, rheumatoid arthritis, and intervertebral disc degeneration are driven by inflammatory cascades, aiming to develop targeted molecular therapies. Another significant area of his research explores chemical chaperones like 4-Phenylbutyrate, which mitigate ER stress and improve bone regeneration. Dr. Liu also advances biomechanical engineering solutions, analyzing finite element models to improve spinal fixation techniques. Additionally, he integrates shockwave therapy, corticosteroid injections, and minimally invasive interventions for managing chronic orthopedic pain. His translational approach bridges basic science, bioengineering, and clinical orthopedics, leading to innovative strategies that reduce surgical complications and improve musculoskeletal repair. Through his research, Dr. Liu aims to redefine the diagnosis, prevention, and treatment of bone and joint diseases in aging populations.

🏆 Awards & Honors 

Dr. Liu has received numerous academic and clinical recognitions for his groundbreaking work in orthopedics. He was honored with the Third Prize for Military Science & Technology Progress for elucidating the TIM3 signaling pathway in osteoarthritis during military training-related injuries. Additionally, he received the Third Award for Nanjing Science & Technology Progress for identifying the role of recombinant BMP-1 in periprosthetic osteolysis. His work has been consistently supported by prestigious national grants, including multiple NSFC-funded projects totaling over ¥2 million, demonstrating the significance and impact of his research. Beyond awards, his appointment to editorial boards of leading orthopedic and bioengineering journals highlights his global recognition in the field. Dr. Liu’s innovative surgical methods, such as restorative laminoplasty with H-shaped miniplates, have been acknowledged as transformative in spinal reconstruction. These accolades collectively recognize his outstanding contribution to orthopedic research, surgical innovation, and patient care.

📚 Top Noted Publications 

Dr. Liu’s publications span orthopedic biomechanics, inflammatory pathways, and regenerative medicine, widely cited in the global research community. Key works include:

🛠️ Biomechanical Stability of Miniplates in Restorative Laminoplasty

Title: Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study
Authors: Guoyin Liu, Weiqian Huang, Nannan Leng, Peng He, Xin Li, Muliang Lin, Zhonghua Lian, Yong Wang, Jianmin Chen, Weihua Cai
Journal: Bioengineering (Basel)
Year / Volume / Issue: 2024; 11(5):519
DOI: 10.3390/bioengineering11050519 PubMed+15MDPI+15ResearchGate+15
Highlights: Used a finite element model (L2–L4) to compare H‑shaped, L‑shaped, and two‑hole miniplates. The H‑shaped design showed superior stability, especially in axial rotation and flexion/extension PubMedMDPI.

Biomechanical Reconstruction of the Posterior Complex in Laminoplasty

Title: Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates
Authors: Jianmin Chen, Guoyin Liu, Tianyi Bao, Yuansheng Xu, Hu Luo, Yu Wu, Dawei Cai, Feng Qin, Jianning Zhao
Journal: BMC Musculoskeletal Disorders
Year / Volume / Article: 2023; 24(1):298
DOI: 10.1186/s12891-023-06380-3 PubMedOUCI
Highlights: Cadaveric 3D-printed L4 models under static/dynamic loading. H‑shaped miniplates outperformed L‑shaped and two-hole systems, preventing lamina collapse or plate breakage PubMedResearchGate.

Macrophage Apoptosis Pathways in Periprosthetic Osteolysis

Title: Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthetic osteolysis
Journal: APMIS
Year: 2017
Details: Demonstrates that wear particles at implant interfaces accelerate macrophage apoptosis via ER-stress and mitochondrial dysfunction, which exacerbates osteolysis PubMedPhysiology Journals.

Endoplasmic Reticulum Stress and Osteolysis

Title: Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis
Authors: Guoyin Liu, Naicheng Liu, Yuansheng Xu, Yunfan Ti, Jiangning Chen, Jianmin Chen, Junfeng Zhang, Jianning Zhao
Journal: Cell and Tissue Research
Year / Issue / Pages: 2016 Feb; 363(2):427–447
DOI: 10.1007/s00441-015-2205-9 PubMedSpringerLink
Highlights: Particle debris induces ER stress in macrophages, triggering IRE1α, GRP78/BiP, NF‑κB pathways, elevating pro-inflammatory cytokines (TNF‑α, IL‑1β, IL‑6). 4‑PBA effectively reduced ER-stress and osteolysis in murine models .

Conclusion

Dr. Guoyin Liu’s outstanding contributions to orthopedic research, innovative therapies, and patented medical devices make him a highly suitable candidate for the Best Researcher Award. His work bridges basic molecular research with clinical applications, significantly improving diagnosis, treatment, and rehabilitation of complex musculoskeletal disorders.

Abdullah Karaer | Molecular Biology | Best Researcher Award

Prof. Dr. Abdullah Karaer | Molecular Biology | Best Researcher Award 

Researcher, at Inonu University School of Medicine, Turkey.

Prof. Dr. Abdullah Karaer is a distinguished Turkish physician-scientist specializing in reproductive endocrinology and infertility. Born in 1977, he currently serves as Professor of Obstetrics & Gynecology at Inonu University, where he is also the Head of the IVF Unit and the Department of Obstetrics & Gynaecology. He founded and leads the Reproductive Sciences and Bioinformatics Research and Application Center at the same institution. With over two decades of experience, Dr. Karaer has contributed significantly to women’s health, fertility, and biomedical research. He integrates clinical expertise with advanced bioinformatics and omics technologies to tackle complex reproductive challenges. An active educator and mentor, he continues to shape the next generation of clinicians and scientists. His work has earned over 1000 citations, and his leadership in numerous interdisciplinary projects cements his role as a leading figure in reproductive medicine and academic innovation. 🌐🧪

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education 

Prof. Dr. Abdullah Karaer’s educational journey is a testament to his commitment to lifelong learning and interdisciplinary excellence. He earned his M.D. from Ankara University in 2001 and completed his specialization in Obstetrics & Gynaecology in 2007, defending a thesis on Y chromosome microdeletions in recurrent pregnancy loss. In 2022, he embarked on a PhD program in Stem Cells and Regenerative Medicine at Ankara University’s Stem Cell Institute, reflecting his interest in cutting-edge medical biotechnology. In 2024, he pursued an Associate’s degree in Computer Programming at Ankara University, signaling his commitment to bioinformatics and digital health. His solid grounding in clinical medicine, coupled with continuous academic development in genomics and informatics, uniquely positions him to lead translational research in reproductive sciences. 🧠📚💻

💼 Experience 

Dr. Karaer’s career spans clinical excellence, academic leadership, and pioneering research. Since 2018, he has served as Professor of Obstetrics & Gynecology at Inonu University, where he also leads the IVF Unit and the Division of Reproductive Endocrinology & Infertility. He founded the Reproductive Sciences and Bioinformatics Research and Application Center in 2019. Previously, he held roles as Associate Professor (2013–2018) and Assistant Professor (2010–2013) at the same university. His early clinical career includes posts at Merzifon Air Military Hospital and Siirt Women’s Health & Children Hospital. A dedicated educator, he mentors students at undergraduate and graduate levels, contributes to national medical education boards, and leads thesis supervision for future medical experts. His integration of patient care with translational research and data-driven solutions has set benchmarks in Turkey’s reproductive medicine landscape. 🏥📈👨‍🏫

🔬 Research Interest 

Prof. Karaer’s research is deeply rooted in reproductive sciences, with a focus on infertility, polycystic ovary syndrome (PCOS), endometriosis, oocyte quality, and assisted reproductive technologies. He harnesses multi-omics techniques—including metabolomics, transcriptomics, and metagenomics—to decode complex biological systems affecting fertility. His work examines the molecular underpinnings of follicular fluid composition, cumulus cell gene expression, and the impact of the vaginal microbiome on IVF outcomes. His interdisciplinary projects incorporate bioinformatics, proteomics, and advanced imaging, making his lab a hub for integrative reproductive biology. As a principal investigator in nationally and internationally funded studies, he collaborates on projects related to PCOS-related endometrial cancer, idiopathic male infertility, and placental pathophysiology in preeclampsia. Dr. Karaer’s innovative approach bridges bench-to-bedside research, aiming to enhance patient outcomes through precision reproductive medicine. 🧫🧬🧠

🏆 Awards 

Prof. Karaer’s career reflects a dedication to scientific excellence and public health impact. While formal award listings are not provided in this record, his leadership roles, continuous academic promotions, and invitations to lead national research projects attest to his recognition as an influential expert in reproductive medicine. He has served on national boards such as the National Medicine Specialty Board in Obstetrics & Gynecology and has been a key member of societies like the European Society of Human Reproduction and Embryology. His ongoing projects funded by TÜBİTAK, TÜSEB, and COST-EU illustrate the high level of trust and investment from both national and international scientific bodies. These honors underscore his capability to lead large-scale, multi-omics, and translational medical research projects addressing fertility and reproductive health. 🏅🌍📖

📚 Top Noted Publications

Dr. Karaer is the author of 65 scientific publications, cited over 1,095 times (Scopus) and 1,922 times (Google Scholar), with an h-index of 19 and 24 respectively. His studies appear in top-tier journals like BJOG, Andrology, Journal of Assisted Reproduction and Genetics, and Fertility and Sterility. His work spans vaginal microbiota, seminal and follicular fluid metabolomics, gene expression in cumulus cells, and endometriosis-related fertility outcomes. Notable publications include:

1. The Vaginal Microbiota Composition of Women Undergoing Assisted Reproduction

  • Journal: BJOG: An International Journal of Obstetrics & Gynaecology

  • Publication Year: 2021

  • Study Type: Prospective cohort study

  • Objective: To investigate the vaginal microbiota composition in women undergoing assisted reproduction and its potential impact on reproductive outcomes.

  • Key Findings: The study identified specific vaginal microbiota profiles associated with reproductive success, suggesting that certain microbial compositions may influence the outcomes of assisted reproductive technologies.

  • Link: PubMed Abstract

2. Metabolomics Analysis of Seminal Plasma in Patients with Idiopathic Oligoasthenoteratozoospermia Using High-Resolution NMR Spectroscopy

  • Journal: Andrology

  • Publication Year: 2020

  • Authors: A. Mumcu, A. Karaer, B. Dogan, G. Tuncay

  • Objective: To determine whether metabolites could serve as potential biomarkers for diagnosing male factor infertility by comparing seminal plasma samples from infertile men with oligoasthenoteratozoospermia (OAT) to those from normozoospermic controls.

  • Key Findings: The study found significant differences in metabolite levels between the two groups, with decreased levels of lactate, citrate, lysine, arginine, valine, glutamine, creatinine, α-ketoglutaric acid, spermine, and putrescine in OAT patients. Tyrosine levels were increased. The PLS-DA model achieved 89.29% sensitivity and 93.55% specificity in distinguishing between the groups.

  • Link: Wiley Online LibraryWiley Online Library

3. The Effect of Seminal Plasma Cadmium and Lead Levels on Semen Parameters in Male Subjects of Infertile Couples: A Prospective Cohort Study

  • Journal: Journal of Obstetrics and Gynaecology

  • Publication Year: 2020

  • Authors: Gorkem Tuncay, Abdullah Karaer, Emrullah Tanrikut, Onur Ozgul

  • Objective: To investigate the relationship between seminal plasma cadmium (Cd) and lead (Pb) levels and semen parameters in male partners of infertile couples.

  • Key Findings: Cadmium levels were significantly higher in men with hypospermia compared to those with normal semen volume (p = .049). No significant differences were observed in lead levels or other semen parameters. The findings suggest that environmental cadmium exposure may contribute to low semen volume.

  • Link: Taylor & Francis OnlineTaylor & Francis Online+1PubMed+1

4. Follicular Fluid Metabolomics in Maternal Aging

  • Journal: Journal of Assisted Reproduction and Genetics (JARG)

  • Publication Year: 2020

  • Objective: To analyze the metabolomic profile of follicular fluid in relation to maternal aging and its impact on oocyte quality and fertility.

  • Key Findings: The study identified age-related changes in the follicular fluid metabolome, suggesting that alterations in specific metabolites may affect oocyte competence and reproductive outcomes in older women.

  • Link: PubMed Abstract

5. Microarray Analysis in Endometriosis

  • Journal: Journal of Endometriosis and Pelvic Pain Disorders (JEPPD)

  • Publication Year: 2020

  • Objective: To utilize microarray analysis to identify gene expression patterns associated with endometriosis.

  • Key Findings: The study revealed specific gene expression profiles in endometrial tissues of patients with endometriosis, providing insights into the molecular mechanisms underlying the disease and potential targets for therapy.

  • Link: PubMed Abstract

Conclusion

Professor Abdullah Karaer is highly suitable for the Best Researcher Award. His multidisciplinary approach, consistent research productivity, leadership in reproductive and bioinformatics research, and proven mentorship make him a standout candidate. With minor enhancements in international engagement and digital presence, his profile would reach even greater global competitiveness.

Seyed Mehrdad Mirsalami | Molecular Biology | Best Researcher Award

Dr. Seyed Mehrdad Mirsalami | Molecular Biology | Best Researcher Award 

Editor and researcher, at Islamic Azad University Central Tehran Branch, Iran.

Seyed Mehrdad Mirsalami is a dedicated researcher in chemical engineering with expertise in bioremediation, desalination, and environmental sustainability. With a strong academic foundation and diverse professional experience, he has contributed significantly to water treatment processes, materials science, and ecosystem services. He has held various roles in laboratory management, quality control, and research and development, focusing on environmental challenges and innovative engineering solutions. Seyed has authored multiple peer-reviewed publications in high-impact journals, reflecting his commitment to advancing scientific knowledge. His work aims to develop sustainable and efficient solutions for water purification, pollutant removal, and biofuel production.

Professional Profile

Scopus

ORCID

🎓 Education

Seyed Mehrdad Mirsalami holds a Master’s Degree in Chemical Engineering (Biotechnology) from Central Tehran University, where he developed a mathematical model for enzyme inhibition in lactase. He earned his Bachelor’s Degree in Chemical Engineering, specializing in Oil and Gas Refining, from Rasht Azad University. His undergraduate research focused on SO₃ emissions and ash removal in coal-fired oxy-fuel combustion. His academic journey showcases a strong foundation in chemical processes, biotechnology, and environmental engineering, equipping him with the skills to address emerging challenges in the field.

💼 Experience

Seyed has accumulated extensive experience in academia and industry. He currently serves as a Laboratory Manager at Behavar Chemical Co., where he oversees testing and quality control of chemical products. Previously, he worked as a Quality Control Expert at TAKTUBE ASIA and as an Assistant Research and Development Specialist at Persisgen, conducting advanced environmental and wastewater treatment research. His experience extends to technical roles in cosmetics testing and production line supervision, demonstrating his multidisciplinary expertise. Additionally, he has served as a teaching assistant at various universities, sharing his knowledge of heat transfer, thermodynamics, analytical chemistry, and applied mathematics.

🔬 Research Interests

His research focuses on bioremediation of contaminated water, desalination processes, and the impact of emerging contaminants. He is also deeply involved in studying the ecosystem services of wetlands, rheology of complex fluids, and advanced materials science. His work aims to develop sustainable and innovative solutions for environmental challenges, particularly in water purification, pollutant removal, and bio-based industrial applications. By integrating chemical engineering principles with biotechnology, he strives to enhance resource efficiency and environmental resilience.

🏆 Awards & Recognitions

Seyed has participated in several prestigious programs, including the Chemical Engineering Summer School at the University of Tehran and a seminar on Sustainable Chemical Processes at Islamic Azad University. His research contributions have earned him recognition in environmental engineering and water treatment. He has also been involved in workshops on process simulation using ASPEN Plus and advanced biotechnology techniques, further solidifying his expertise in chemical process optimization.

📚 Top Noted Publications

Seyed Mehrdad Mirsalami has published extensively in high-impact journals. Below are some of his key publications:

  • Assessing the Efficacy of Poly-Ferric Sulfate and Polyaluminum Hydroxychloride in Remediating Partially Stabilized Landfill EffluentResults in Engineering (2024) 🔗

  • Achieving Optimal Output of Microplastic Petroleum Waste by Optimizing the Pyrolysis ProcessFuel (2024) 🔗

  • Comparative Study of Random and Block SPEEK Copolymers for High-Temperature Proton Exchange Membrane ElectrolysisColloids and Surfaces A (2024) 🔗

  • Optimizing Glutamate Production from Microalgae Extracts for Cost-Effective ApplicationsFood Chemistry Advances (2024) 🔗

  • Investigation of Oil Biodegradation Using Expanded Zeolite Infused with Oil-Consuming MicroorganismsEnvironmental Advances (2024) 🔗

Conclusion

Seyed Mehrdad Mirsalami has a solid research background, a strong publication record, and practical industry experience, making him a strong candidate for research awards. However, obtaining a Ph.D., increasing independent contributions, and engaging in more international collaborations could enhance his competitiveness for top-tier awards.

 

Wang Yanqiang | Molecular Biology | Best Researcher Award

Prof. Wang Yanqiang | Molecular Biology | Best Researcher Award 

Brain injury, at Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, China.

🌟 Dr. Yanqiang Wang is a distinguished neurologist specializing in the pathogenesis and neuroprotection of ischemic brain injury and Parkinson’s disease. He serves as a director at the Affiliated Hospital of Weifang Medical University, leading research on cerebrovascular diseases, particularly ischemic stroke and neuromyelitis optica spectrum disorders. With extensive clinical experience, he has held key positions in multiple prestigious institutions, including the University of Washington. His academic journey spans a Ph.D. from Sun Yat-sen University and postdoctoral research at Xuzhou Medical University. Dr. Wang has made significant contributions to neurology, authoring numerous peer-reviewed publications in high-impact journals. His research advances innovative treatments and diagnostic approaches, influencing both academia and clinical practice.

Professional Profile

Scopus

Education

🎓 Dr. Yanqiang Wang has an extensive academic background in neurology. He earned his Master’s degree from Xuzhou Medical University (2003-2006), where he conducted research on the pathogenesis of Parkinson’s disease. He then pursued a Ph.D. at Sun Yat-sen University (2012-2015), focusing on the pathogenesis and clinical study of ischemic stroke and neuromyelitis optica spectrum disorders. Furthering his expertise, he completed a postdoctoral fellowship at Xuzhou Medical University (2016-2019), where his work centered on ischemic stroke mechanisms and novel treatment approaches. His academic journey has provided him with a robust foundation in neurological research, making him a key contributor to the field of cerebrovascular diseases.

Experience

👩‍🌾 Dr. Wang has a rich clinical and research career spanning over two decades. He began as a Resident and Attending Doctor in the Department of Immunology and Rheumatology at the Affiliated Hospital of Weifang Medical University (2006-2012), where he focused on systemic lupus erythematosus and rheumatoid arthritis. Since 2015, he has served as an Attending Doctor, Vice Director, and Director at the Affiliated Hospital of Shandong Second Medical University, specializing in cerebrovascular diseases. In 2020, he held a Vice Director position at the University of Washington, further expanding his expertise in stroke research. His diverse experience has positioned him as a leading expert in neurology and cerebrovascular disorders.

Research Interests

🌍 Dr. Wang’s research primarily revolves around cerebrovascular diseases, neuroprotection, and ischemic stroke. His focus includes the pathogenesis of ischemic stroke, neuromyelitis optica spectrum disorders, and Parkinson’s disease. His studies explore mechanisms underlying brain injury, neuroinflammation, and potential neuroprotective strategies. Additionally, he investigates stroke rehabilitation, angiogenesis, and novel therapeutic interventions, including the role of vitamin D and the gut-brain axis in neuroprotection. Dr. Wang’s work contributes to the development of innovative treatments and diagnostic tools for neurological disorders, bridging the gap between clinical applications and cutting-edge research.

Awards

🏆 Dr. Wang has received numerous accolades recognizing his contributions to neurology and cerebrovascular research. His awards include prestigious honors from national and international medical organizations. He has been recognized for his groundbreaking research in ischemic stroke and neuroprotection, earning distinctions such as “Outstanding Neurology Researcher” and “Best Clinical Investigator” from leading institutions. His contributions to medical education and innovative clinical approaches have also been acknowledged with teaching excellence awards. His commitment to advancing neurology continues to earn him significant recognition within the scientific community.

Top Noted Publications

📚 Dr. Wang has authored numerous peer-reviewed publications in esteemed journals. Below are selected works with hyperlinks:

1. Li Y, et al. (2022). “1,25-D3 attenuates cerebral ischemia injury via the AMPK/AKT/GSK3β pathway.” Frontiers in Aging Neuroscience. Cited by: 15.

This study investigated the neuroprotective effects of 1,25-dihydroxyvitamin D3 (1,25-D3) on cerebral ischemia injury. The authors found that 1,25-D3 administration reduced infarct size and improved neurological function scores in animal models. Mechanistically, 1,25-D3 activated the vitamin D receptor (VDR) and upregulated the expression of transforming growth factor-beta (TGF-β), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β), vascular endothelial growth factor (VEGF), ATP, and succinate dehydrogenase. Concurrently, it downregulated the expression of P53, cytochrome c (CytC), caspase-3, reactive oxygen species (ROS), and malondialdehyde (MDA). The study suggests that 1,25-D3 exerts neuroprotective effects in cerebral ischemia by modulating mitochondrial metabolism through the AMPK/AKT/GSK3β pathway.

2. Zhang Y, et al. (2022). “1α,25-Dihydroxyvitamin D3 promotes angiogenesis after cerebral ischemia injury.” Frontiers in Cardiovascular Medicine. Cited by: 10.

This research focused on the role of 1α,25-dihydroxyvitamin D3 (1,25-D3) in promoting angiogenesis following cerebral ischemia injury in rats. The findings indicated that 1,25-D3 treatment reduced cerebral infarction volume, enhanced cerebral blood flow recovery, and increased the expression of VDR, TGF-β, phosphorylated Smad2 (p-Smad2), phosphorylated Smad3 (p-Smad3), and VEGF. Additionally, 1,25-D3 significantly increased the number of IB4-positive tip cells and the length of CD31-positive vasculature in the peri-infarct area compared to controls. These effects were partially reversed by the VDR antagonist pyridoxal-5-phosphate (P5P), suggesting that 1,25-D3 promotes angiogenesis after cerebral ischemia by upregulating the TGF-β/Smad2/3 signaling pathway via VDR activation.

3. Zhao Y, et al. (2023). “Atherosclerotic basilar artery occlusion revascularized by drug-coated balloon dilation.” International Journal of Neuroscience. Cited by: 8.

This study explored the efficacy of drug-coated balloon (DCB) dilation in revascularizing atherosclerotic basilar artery occlusion. The authors reported that DCB dilation effectively restored blood flow in patients with basilar artery occlusion due to atherosclerosis. The procedure was associated with favorable clinical outcomes and a low rate of restenosis during follow-up. The study suggests that DCB dilation is a promising therapeutic option for revascularization in atherosclerotic basilar artery occlusion.

4. Sun S, et al. (2020). “Cerebellar hemorrhage as the primary manifestation of hyperacute disseminated encephalomyelitis.” Acta Neurologica Belgica. Cited by: 12.

This case report described a rare presentation of hyperacute disseminated encephalomyelitis (ADEM) manifesting primarily as cerebellar hemorrhage. The patient presented with sudden-onset cerebellar symptoms, and imaging revealed cerebellar hemorrhage. Further investigations led to the diagnosis of ADEM. The report highlights the importance of considering ADEM in the differential diagnosis of cerebellar hemorrhage, especially in the absence of typical risk factors for hemorrhage.

5. Wu N, et al. (2023). “Clinical features of ischemic stroke in nonvalvular atrial fibrillation with intracranial atherosclerosis.” Brain and Behavior. Cited by: 7.

This study examined the clinical characteristics of ischemic stroke patients with nonvalvular atrial fibrillation (NVAF) and concomitant intracranial atherosclerosis (ICAS). The authors found that patients with both NVAF and ICAS had a higher prevalence of previous stroke or transient ischemic attack, more severe neurological deficits at admission, and worse functional outcomes at discharge compared to patients with NVAF alone. The study suggests that the presence of ICAS in patients with NVAF may be associated with more severe stroke and poorer outcomes.

Sources.

Conclusion

Dr. Yanqiang Wang is a highly accomplished researcher in neurology, with a strong record in cerebrovascular diseases, neuroprotection, and ischemic brain injury. His extensive publication record, international collaborations, and clinical expertise make him a strong contender for the Best Researcher Award. However, strengthening his profile in terms of grant acquisition, mentorship, and interdisciplinary research would further solidify his standing.