Abdullah Karaer | Molecular Biology | Best Researcher Award

Prof. Dr. Abdullah Karaer | Molecular Biology | Best Researcher Award 

Researcher, at Inonu University School of Medicine, Turkey.

Prof. Dr. Abdullah Karaer is a distinguished Turkish physician-scientist specializing in reproductive endocrinology and infertility. Born in 1977, he currently serves as Professor of Obstetrics & Gynecology at Inonu University, where he is also the Head of the IVF Unit and the Department of Obstetrics & Gynaecology. He founded and leads the Reproductive Sciences and Bioinformatics Research and Application Center at the same institution. With over two decades of experience, Dr. Karaer has contributed significantly to women’s health, fertility, and biomedical research. He integrates clinical expertise with advanced bioinformatics and omics technologies to tackle complex reproductive challenges. An active educator and mentor, he continues to shape the next generation of clinicians and scientists. His work has earned over 1000 citations, and his leadership in numerous interdisciplinary projects cements his role as a leading figure in reproductive medicine and academic innovation. 🌐🧪

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education 

Prof. Dr. Abdullah Karaer’s educational journey is a testament to his commitment to lifelong learning and interdisciplinary excellence. He earned his M.D. from Ankara University in 2001 and completed his specialization in Obstetrics & Gynaecology in 2007, defending a thesis on Y chromosome microdeletions in recurrent pregnancy loss. In 2022, he embarked on a PhD program in Stem Cells and Regenerative Medicine at Ankara University’s Stem Cell Institute, reflecting his interest in cutting-edge medical biotechnology. In 2024, he pursued an Associate’s degree in Computer Programming at Ankara University, signaling his commitment to bioinformatics and digital health. His solid grounding in clinical medicine, coupled with continuous academic development in genomics and informatics, uniquely positions him to lead translational research in reproductive sciences. 🧠📚💻

💼 Experience 

Dr. Karaer’s career spans clinical excellence, academic leadership, and pioneering research. Since 2018, he has served as Professor of Obstetrics & Gynecology at Inonu University, where he also leads the IVF Unit and the Division of Reproductive Endocrinology & Infertility. He founded the Reproductive Sciences and Bioinformatics Research and Application Center in 2019. Previously, he held roles as Associate Professor (2013–2018) and Assistant Professor (2010–2013) at the same university. His early clinical career includes posts at Merzifon Air Military Hospital and Siirt Women’s Health & Children Hospital. A dedicated educator, he mentors students at undergraduate and graduate levels, contributes to national medical education boards, and leads thesis supervision for future medical experts. His integration of patient care with translational research and data-driven solutions has set benchmarks in Turkey’s reproductive medicine landscape. 🏥📈👨‍🏫

🔬 Research Interest 

Prof. Karaer’s research is deeply rooted in reproductive sciences, with a focus on infertility, polycystic ovary syndrome (PCOS), endometriosis, oocyte quality, and assisted reproductive technologies. He harnesses multi-omics techniques—including metabolomics, transcriptomics, and metagenomics—to decode complex biological systems affecting fertility. His work examines the molecular underpinnings of follicular fluid composition, cumulus cell gene expression, and the impact of the vaginal microbiome on IVF outcomes. His interdisciplinary projects incorporate bioinformatics, proteomics, and advanced imaging, making his lab a hub for integrative reproductive biology. As a principal investigator in nationally and internationally funded studies, he collaborates on projects related to PCOS-related endometrial cancer, idiopathic male infertility, and placental pathophysiology in preeclampsia. Dr. Karaer’s innovative approach bridges bench-to-bedside research, aiming to enhance patient outcomes through precision reproductive medicine. 🧫🧬🧠

🏆 Awards 

Prof. Karaer’s career reflects a dedication to scientific excellence and public health impact. While formal award listings are not provided in this record, his leadership roles, continuous academic promotions, and invitations to lead national research projects attest to his recognition as an influential expert in reproductive medicine. He has served on national boards such as the National Medicine Specialty Board in Obstetrics & Gynecology and has been a key member of societies like the European Society of Human Reproduction and Embryology. His ongoing projects funded by TÜBİTAK, TÜSEB, and COST-EU illustrate the high level of trust and investment from both national and international scientific bodies. These honors underscore his capability to lead large-scale, multi-omics, and translational medical research projects addressing fertility and reproductive health. 🏅🌍📖

📚 Top Noted Publications

Dr. Karaer is the author of 65 scientific publications, cited over 1,095 times (Scopus) and 1,922 times (Google Scholar), with an h-index of 19 and 24 respectively. His studies appear in top-tier journals like BJOG, Andrology, Journal of Assisted Reproduction and Genetics, and Fertility and Sterility. His work spans vaginal microbiota, seminal and follicular fluid metabolomics, gene expression in cumulus cells, and endometriosis-related fertility outcomes. Notable publications include:

1. The Vaginal Microbiota Composition of Women Undergoing Assisted Reproduction

  • Journal: BJOG: An International Journal of Obstetrics & Gynaecology

  • Publication Year: 2021

  • Study Type: Prospective cohort study

  • Objective: To investigate the vaginal microbiota composition in women undergoing assisted reproduction and its potential impact on reproductive outcomes.

  • Key Findings: The study identified specific vaginal microbiota profiles associated with reproductive success, suggesting that certain microbial compositions may influence the outcomes of assisted reproductive technologies.

  • Link: PubMed Abstract

2. Metabolomics Analysis of Seminal Plasma in Patients with Idiopathic Oligoasthenoteratozoospermia Using High-Resolution NMR Spectroscopy

  • Journal: Andrology

  • Publication Year: 2020

  • Authors: A. Mumcu, A. Karaer, B. Dogan, G. Tuncay

  • Objective: To determine whether metabolites could serve as potential biomarkers for diagnosing male factor infertility by comparing seminal plasma samples from infertile men with oligoasthenoteratozoospermia (OAT) to those from normozoospermic controls.

  • Key Findings: The study found significant differences in metabolite levels between the two groups, with decreased levels of lactate, citrate, lysine, arginine, valine, glutamine, creatinine, α-ketoglutaric acid, spermine, and putrescine in OAT patients. Tyrosine levels were increased. The PLS-DA model achieved 89.29% sensitivity and 93.55% specificity in distinguishing between the groups.

  • Link: Wiley Online LibraryWiley Online Library

3. The Effect of Seminal Plasma Cadmium and Lead Levels on Semen Parameters in Male Subjects of Infertile Couples: A Prospective Cohort Study

  • Journal: Journal of Obstetrics and Gynaecology

  • Publication Year: 2020

  • Authors: Gorkem Tuncay, Abdullah Karaer, Emrullah Tanrikut, Onur Ozgul

  • Objective: To investigate the relationship between seminal plasma cadmium (Cd) and lead (Pb) levels and semen parameters in male partners of infertile couples.

  • Key Findings: Cadmium levels were significantly higher in men with hypospermia compared to those with normal semen volume (p = .049). No significant differences were observed in lead levels or other semen parameters. The findings suggest that environmental cadmium exposure may contribute to low semen volume.

  • Link: Taylor & Francis OnlineTaylor & Francis Online+1PubMed+1

4. Follicular Fluid Metabolomics in Maternal Aging

  • Journal: Journal of Assisted Reproduction and Genetics (JARG)

  • Publication Year: 2020

  • Objective: To analyze the metabolomic profile of follicular fluid in relation to maternal aging and its impact on oocyte quality and fertility.

  • Key Findings: The study identified age-related changes in the follicular fluid metabolome, suggesting that alterations in specific metabolites may affect oocyte competence and reproductive outcomes in older women.

  • Link: PubMed Abstract

5. Microarray Analysis in Endometriosis

  • Journal: Journal of Endometriosis and Pelvic Pain Disorders (JEPPD)

  • Publication Year: 2020

  • Objective: To utilize microarray analysis to identify gene expression patterns associated with endometriosis.

  • Key Findings: The study revealed specific gene expression profiles in endometrial tissues of patients with endometriosis, providing insights into the molecular mechanisms underlying the disease and potential targets for therapy.

  • Link: PubMed Abstract

Conclusion

Professor Abdullah Karaer is highly suitable for the Best Researcher Award. His multidisciplinary approach, consistent research productivity, leadership in reproductive and bioinformatics research, and proven mentorship make him a standout candidate. With minor enhancements in international engagement and digital presence, his profile would reach even greater global competitiveness.

Weiwei Fu | Molecular Biology | Best Researcher Award

Dr. Weiwei Fu | Molecular Biology | Best Researcher Award 

Research assistant professor, at Peking University Third Hospital, China.

Dr. Fu Weiwei is an accomplished medical scientist specializing in gastroenterology and immunology. She currently serves as an Assistant Research Professor and Laboratory Director at the Gastroenterology Department, Peking University Third Hospital, where she leads research at the Beijing Key Laboratory. Dr. Fu earned her Ph.D. in Immunology from Peking University Health Science Center and has a strong foundation in traditional medicine, holding a Bachelor of Medicine from Shandong University. With more than a decade of experience in translational medical research, her work bridges cutting-edge immunological discoveries and practical clinical applications. Her focus lies in immune microenvironment dynamics, gastrointestinal tumor evolution, and the integration of traditional Chinese medicine for digestive disease therapies. She has delivered several high-profile international presentations and has published widely in leading scientific journals. Her contributions have significantly advanced the field of digestive immunology.

Professional Profile

Scopus

ORCID

🎓 Education

Dr. Fu’s academic journey began with a 5-year Bachelor of Medicine program at Shandong University of Traditional Chinese Medicine (2002–2007), where she laid a solid foundation in both conventional and traditional healthcare practices. Her early exposure to integrative medicine inspired a unique perspective on digestive health and immune response. Motivated by scientific rigor, she enrolled in the Combined Master’s and Ph.D. Program in Immunology (2008–2013) at Peking University Health Science Center, mentored by Prof. Wenling Han. This elite program sharpened her skills in molecular biology, immunopathology, and clinical translational research. Throughout her doctoral years, she focused on the host immune responses in cancer, particularly those related to gastric inflammation and tumorigenesis. This diverse academic training enables her to merge modern biomedical technologies with traditional insights, giving her an edge in the multidisciplinary field of digestive immunology.

🧪 Experience

Dr. Fu brings a wealth of research and clinical experience to her current position at the Gastroenterology Department, Peking University Third Hospital (2019–present), where she directs the Beijing Key Laboratory. As an Assistant Research Professor, she leads a team focusing on translational immunology in gastrointestinal diseases. Before this, she completed a prestigious postdoctoral fellowship (2013–2019) at the Tsinghua University Institute of Immunology under Prof. Chen Dong, an Academician of the Chinese Academy of Sciences. During this time, she worked on T-cell signaling, immune checkpoints, and the role of lymphoid cells in cancer. Her lab currently integrates clinical cohort data with multi-omics techniques to explore disease mechanisms. She is also instrumental in mentoring junior researchers and clinicians. Her work bridges laboratory immunology with bedside applications, ensuring scientific advancements are translated into improved diagnosis and therapy for patients.

🔬 Research Interests

Dr. Fu’s research centers on the immune microenvironment in gastrointestinal tumors and digestive tract diseases, such as gastric cancer and inflammatory bowel disease. She applies multi-omics technologies—including single-cell RNA sequencing, proteomics, and microbiome analysis—to decipher host-pathogen interactions and immune cell dynamics during disease evolution. A key aspect of her research is understanding how Helicobacter pylori infection initiates gastric lesions, tumor progression, and immune escape. She also investigates traditional Chinese medicine-based therapies, exploring their role in cancer prevention and immune modulation. Another focal point is early screening and biomarker discovery for precancerous lesions through clinical cohort studies. By integrating high-throughput data with clinical insights, her work aims to improve patient stratification and individualized treatments. Her interdisciplinary approach bridges immunology, oncology, and traditional medicine, placing her at the forefront of gastrointestinal research in China and beyond.

🏆 Awards

Dr. Fu’s scientific excellence has been consistently recognized. She won the Outstanding Paper Award at the 2023 Chinese Medical Association’s National Conference on Digestive Diseases (CGC 2023) for her oral presentation on immune profiling during colorectal cancer progression. Her continuous contributions to clinical immunology, translational oncology, and molecular diagnostics have earned her accolades from both national and international platforms. Her selection as an oral presenter at leading conferences—such as DDW 2024 in Washington, D.C., and UEGW 2023 in Copenhagen—speaks to her international recognition. She has also received patent grants for innovations in inflammation and cancer therapy, reflecting her drive for practical applications. As a dedicated researcher, educator, and innovator, Dr. Fu stands out as a top candidate for award nominations in the fields of biomedical research and clinical translational science.

📚 Top Noted Publications

Dr. Fu has authored and co-authored numerous impactful papers in top-tier journals (JCR Q1–Q3), often as first or corresponding author. Below are select publications with hyperlink.

2025

  1. Luteolin Improves Precancerous Gastric Mucosa by Binding STAT3
    International Journal of Biological Sciences (Q1, IF 8.1)
    📌 Co-Corresponding Author
    🧪 Original Research

  2. CMTM3 Regulates Colitis-Associated Cancer Progression
    Cellular and Molecular Gastroenterology and Hepatology (CMGH) (Q1, IF 7.1)
    📌 Co-Corresponding Author
    🧬 Original Research

  3. Cmtm4 Deficiency Exacerbates H. pylori-Induced Gastric Carcinogenesis
    Pathology International (Q2, IF 2.5)
    📌 Co-Corresponding Author
    🦠 Original Research

  4. The Host Immune Response Landscape in Gastric Cancer Development
    Clinical and Experimental Immunology (Q2, IF 3.4)
    📌 First Author
    🧫 Original Research

2024

  1. Neutrophil Heterogeneity in Hepatocellular Carcinoma and Tumor Immunity
    Cancer Medicine (Q2, IF 2.9)
    📌 Co-First Author
    🔬 Original Research

  2. Oxidative Balance in Diet and Sleep Patterns: A Metabolic Interaction
    Frontiers in Nutrition (Q2, IF 4.0)
    📌 Co-First Author
    🍽 Original Research

  3. CMTM4 Facilitates Gastric Cancer Metastasis via EMT Modulation
    Journal of Gastrointestinal Oncology (Q3, IF 2.0)
    📌 Co-First Author
    🧠 Original Research

  4. Cmtm4 Shapes Colitis Outcomes via Microbial Dysbiosis and Mucosal Immunity
    Journal of Genetics and Genomics (Q1, IF 6.6)
    📌 Co-Corresponding Author
    🧪 Original Research

  5. Serum Proteomics-Based Biomarkers of Precancerous Gastric Lesions
    Frontiers in Molecular Biosciences (Q2, IF 3.9)
    📌 Co-Corresponding Author
    🔍 Original Research

  6. Treg Subsets Orchestrate Tumor Microenvironment in Colorectal Cancer
    Frontiers in Immunology (Q1, IF 5.7)
    📌 Co-First & Corresponding Author
    🧫 Original Research

2023

  1. Helicobacter pylori and Inflammasome Activation in Gastric Pathogenesis (Review)
    Helicobacter (Q2, IF 4.3)
    📌 Co-Corresponding Author
    🧯 Review Article

2022

  • Lymphocyte Profile Alterations in Precancerous Gastric Lesions
    Journal of Leukocyte Biology (Q2, IF 5.5)
    📌 First Author
    🧬 Original Research

  • B7 Family Molecules and Immune Evasion in H. pylori Infection (Review)
    Helicobacter (Q2, IF 4.4)
    📌 Co-Corresponding Author
    🧫 Review Article

Conclusion

Dr. FU Weiwei demonstrates an exceptional and well-rounded profile as a medical researcher with significant contributions to immunology and gastroenterology, supported by prestigious academic training, a robust scientific publication record, impactful patents, and strong conference presence. These achievements, particularly in translational cancer immunology, make Dr. Fu highly suitable for the Best Researcher Award.

King-cheong LAM | Molecular Biology | Best Researcher Award

Dr. King-cheong LAM | Molecular Biology | Best Researcher Award

Senior Lecturer, at The School of Professional Education and Executive Development (SPEED), The Hong Kong Polytechnic University, Hong Kong.

Dr. LAM King-cheong Antony is a seasoned academic currently serving as a Senior Lecturer in the Division of Science, Engineering and Health Studies at the College of Professional and Continuing Education (CPCE), The Hong Kong Polytechnic University. With a rich interdisciplinary background in physics and engineering education, Dr. Lam has consistently contributed to innovative teaching methods and research initiatives. His career journey from a secondary school teacher to a respected university lecturer is marked by dedication to student development, academic leadership, and community outreach. 📘 His roles as Programme Leader and Co-Investigator in prestigious funded projects reflect his commitment to applied research and educational advancement. Through his work in nanotechnology, sustainable energy, and smart sensor systems, Dr. Lam exemplifies a professional devoted to shaping the future of science education and technology for sustainable urban living. 🌱

Professional Profile

Scopus

ORCID

🎓 Education

Dr. Antony Lam’s academic path is built on a solid foundation in science and education. 🎓 He earned his Doctor of Philosophy from The Hong Kong Polytechnic University in 2017, where he focused on gas sensing materials using graphene-based composites. Prior to that, he completed his Master of Philosophy (2008) and Bachelor of Science in Physics (2005) at The University of Hong Kong, establishing his grounding in physical sciences. Recognizing the importance of pedagogy in science, he also pursued a Postgraduate Diploma in Education from The University of Hong Kong in 2010, equipping himself with the skills to bridge research and teaching. This rare blend of scientific rigor and educational expertise empowers him to mentor students and lead cross-disciplinary research with confidence. 🧠 His training has laid the foundation for a career devoted to both scientific discovery and academic development.

💼 Experience

Dr. Lam’s professional career spans across secondary and tertiary education sectors. 🏫 From 2007 to 2012, he began his journey as a science teacher at Heung To Secondary School (TKO), where he nurtured young minds with enthusiasm for physics. In 2018, he transitioned to higher education as a Lecturer at CPCE, The Hong Kong Polytechnic University, and was promoted to Senior Lecturer in 2024. Over the years, Dr. Lam has taken on several key academic leadership roles, including Programme Leader for Associate in Engineering and Higher Diploma in Aircraft Services Engineering, and Assistant Programme Leader for the BEng (Hons) in Mechanical Engineering. 💼 These positions not only reflect his pedagogical expertise but also his capability in curriculum innovation and academic governance. Dr. Lam’s dedication to bridging practical engineering with academic training is central to his career mission of advancing applied science education. ⚙️

🔬 Research Interests

Dr. Lam’s research interests lie at the intersection of nanotechnology, green energy, sustainable materials, and smart sensing systems. 🌍 His work explores the fabrication of advanced materials such as tin-based perovskites, graphene composites, and aluminum-ion batteries to enhance energy efficiency and sensor capabilities. A significant part of his research addresses real-world sustainability challenges—ranging from developing natural fiber/concrete composites for eco-friendly buildings to ionic-liquid-based gas sensors for smart cities. 🏙️ He is also actively investigating thermal and mechanical properties of biomaterials, including mycelium-based composites for biomedical applications. His interdisciplinary approach combines physics, chemistry, and engineering to produce applicable technologies for energy and healthcare sectors. Through multiple funded projects and international conferences, Dr. Lam has established himself as a researcher committed to translational science for societal impact. 🌱

🏅 Awards

Dr. Lam’s research excellence has earned him both institutional recognition and competitive external grants. 🏆 In 2023, he received the KML Third Prize (HK$200,000) from the Koo Meng Li and Koo Mi Wen Na Charitable Foundation Limited for his project on natural fiber/concrete composites for sustainable buildings. He has been a Principal Investigator and Co-Investigator in numerous high-impact projects, including a nearly HK$1 million RGC-funded project on mycelium-based insoles for diabetic care. 💰 These awards and grants highlight his innovative work in sustainable technology and material science. Dr. Lam’s recognition not only reflects his technical acumen but also his leadership in building collaborative, real-world solutions. His consistent involvement in cutting-edge research underscores his role as a forward-thinking academic in science and engineering education. 🧪

📚 Top Noted Publications

Dr. Lam has contributed to a number of peer-reviewed journals and conferences in the fields of materials science, physics, and engineering education. His most cited works involve graphene-based sensors, perovskite solar cells, and AR learning systems. 📖 His publication list includes:

1. Ahmed, S. B., Kan, H. W., Lam, K. C., & Yip, C. T. (2025)

Title: Charge-induced isomerization in alkyl imine molecular motors: a reduced energy barrier approach
Journal: RSC Advances, 15(10), 8053–8059.

  • Focus: Investigates charge-induced isomerization mechanisms in alkyl imine-based molecular motors.

  • Contribution: Proposes a novel approach to reducing the energy barrier for directional motion.

  • Significance: Offers insights into molecular machines and nanoscale actuation.

2. Wang, Y. D., et al., incl. Lam, K. C. (2024)

Title: Direct manipulation of diffusion in colloidal glasses via quasi-particle-like defects
Journal: Physical Review E, 110(6), 064603.

  • Focus: Explores defect-driven dynamics in colloidal glasses.

  • Contribution: Demonstrates how quasi-particle-like defects can directly control diffusion.

  • Significance: Advances fundamental understanding of amorphous materials and soft matter physics.

3. Li, K. C., Lam, K. C., et al. (2024)

Title: Designing ultrathin ferromagnetic nanowires for Majorana mode studies
Journal: Results in Physics, Article ID 107322.

  • Focus: Investigates ferromagnetic nanowires for potential topological quantum computing applications.

  • Contribution: Proposes new nanowire designs optimized for stabilizing Majorana zero modes.

  • Significance: Supports progress in solid-state quantum computation.

4. Lo, K., Ng, J., Chau, & Lam, A. (2023)

Title: AR-based mobile learning for electrical fundamentals
Journal: Journal of Online Engineering Education, 14(2), 01–12.

  • Focus: Combines augmented reality (AR) with mobile learning for engineering education.

  • Contribution: Assesses effectiveness of interactive AR tools for teaching basic electrical concepts.

  • Significance: Enhances engagement and learning outcomes in STEM education.

5. Lam, K. C., Huang, B., & Shi, S. Q. (2017)

Title: Room-temperature methane gas sensing with graphene-SnO₂
Journal: Journal of Materials Chemistry A, 5, 11131–11142.

  • Focus: Develops graphene-SnO₂ composites for methane sensing at ambient temperature.

  • Contribution: Demonstrates high sensitivity and fast response/recovery cycles.

  • Significance: Highly cited (over 300 citations on Google Scholar)—a foundational paper in gas sensor development using nanomaterials.

Conclusion

Dr. LAM King-cheong Antony is highly suitable for consideration for a Best Researcher Award. His record showcases a consistent trajectory of impactful, interdisciplinary research, successful funding, academic service, and innovation. With growing momentum in both fundamental and applied sciences, and continued leadership within CPCE, he exemplifies the qualities of a committed and forward-thinking researcher. Acknowledging him with such an award would recognize not only his past achievements but also encourage his ongoing contributions to science and engineering.

Wang Yanqiang | Molecular Biology | Best Researcher Award

Prof. Wang Yanqiang | Molecular Biology | Best Researcher Award 

Brain injury, at Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, China.

🌟 Dr. Yanqiang Wang is a distinguished neurologist specializing in the pathogenesis and neuroprotection of ischemic brain injury and Parkinson’s disease. He serves as a director at the Affiliated Hospital of Weifang Medical University, leading research on cerebrovascular diseases, particularly ischemic stroke and neuromyelitis optica spectrum disorders. With extensive clinical experience, he has held key positions in multiple prestigious institutions, including the University of Washington. His academic journey spans a Ph.D. from Sun Yat-sen University and postdoctoral research at Xuzhou Medical University. Dr. Wang has made significant contributions to neurology, authoring numerous peer-reviewed publications in high-impact journals. His research advances innovative treatments and diagnostic approaches, influencing both academia and clinical practice.

Professional Profile

Scopus

Education

🎓 Dr. Yanqiang Wang has an extensive academic background in neurology. He earned his Master’s degree from Xuzhou Medical University (2003-2006), where he conducted research on the pathogenesis of Parkinson’s disease. He then pursued a Ph.D. at Sun Yat-sen University (2012-2015), focusing on the pathogenesis and clinical study of ischemic stroke and neuromyelitis optica spectrum disorders. Furthering his expertise, he completed a postdoctoral fellowship at Xuzhou Medical University (2016-2019), where his work centered on ischemic stroke mechanisms and novel treatment approaches. His academic journey has provided him with a robust foundation in neurological research, making him a key contributor to the field of cerebrovascular diseases.

Experience

👩‍🌾 Dr. Wang has a rich clinical and research career spanning over two decades. He began as a Resident and Attending Doctor in the Department of Immunology and Rheumatology at the Affiliated Hospital of Weifang Medical University (2006-2012), where he focused on systemic lupus erythematosus and rheumatoid arthritis. Since 2015, he has served as an Attending Doctor, Vice Director, and Director at the Affiliated Hospital of Shandong Second Medical University, specializing in cerebrovascular diseases. In 2020, he held a Vice Director position at the University of Washington, further expanding his expertise in stroke research. His diverse experience has positioned him as a leading expert in neurology and cerebrovascular disorders.

Research Interests

🌍 Dr. Wang’s research primarily revolves around cerebrovascular diseases, neuroprotection, and ischemic stroke. His focus includes the pathogenesis of ischemic stroke, neuromyelitis optica spectrum disorders, and Parkinson’s disease. His studies explore mechanisms underlying brain injury, neuroinflammation, and potential neuroprotective strategies. Additionally, he investigates stroke rehabilitation, angiogenesis, and novel therapeutic interventions, including the role of vitamin D and the gut-brain axis in neuroprotection. Dr. Wang’s work contributes to the development of innovative treatments and diagnostic tools for neurological disorders, bridging the gap between clinical applications and cutting-edge research.

Awards

🏆 Dr. Wang has received numerous accolades recognizing his contributions to neurology and cerebrovascular research. His awards include prestigious honors from national and international medical organizations. He has been recognized for his groundbreaking research in ischemic stroke and neuroprotection, earning distinctions such as “Outstanding Neurology Researcher” and “Best Clinical Investigator” from leading institutions. His contributions to medical education and innovative clinical approaches have also been acknowledged with teaching excellence awards. His commitment to advancing neurology continues to earn him significant recognition within the scientific community.

Top Noted Publications

📚 Dr. Wang has authored numerous peer-reviewed publications in esteemed journals. Below are selected works with hyperlinks:

1. Li Y, et al. (2022). “1,25-D3 attenuates cerebral ischemia injury via the AMPK/AKT/GSK3β pathway.” Frontiers in Aging Neuroscience. Cited by: 15.

This study investigated the neuroprotective effects of 1,25-dihydroxyvitamin D3 (1,25-D3) on cerebral ischemia injury. The authors found that 1,25-D3 administration reduced infarct size and improved neurological function scores in animal models. Mechanistically, 1,25-D3 activated the vitamin D receptor (VDR) and upregulated the expression of transforming growth factor-beta (TGF-β), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β), vascular endothelial growth factor (VEGF), ATP, and succinate dehydrogenase. Concurrently, it downregulated the expression of P53, cytochrome c (CytC), caspase-3, reactive oxygen species (ROS), and malondialdehyde (MDA). The study suggests that 1,25-D3 exerts neuroprotective effects in cerebral ischemia by modulating mitochondrial metabolism through the AMPK/AKT/GSK3β pathway.

2. Zhang Y, et al. (2022). “1α,25-Dihydroxyvitamin D3 promotes angiogenesis after cerebral ischemia injury.” Frontiers in Cardiovascular Medicine. Cited by: 10.

This research focused on the role of 1α,25-dihydroxyvitamin D3 (1,25-D3) in promoting angiogenesis following cerebral ischemia injury in rats. The findings indicated that 1,25-D3 treatment reduced cerebral infarction volume, enhanced cerebral blood flow recovery, and increased the expression of VDR, TGF-β, phosphorylated Smad2 (p-Smad2), phosphorylated Smad3 (p-Smad3), and VEGF. Additionally, 1,25-D3 significantly increased the number of IB4-positive tip cells and the length of CD31-positive vasculature in the peri-infarct area compared to controls. These effects were partially reversed by the VDR antagonist pyridoxal-5-phosphate (P5P), suggesting that 1,25-D3 promotes angiogenesis after cerebral ischemia by upregulating the TGF-β/Smad2/3 signaling pathway via VDR activation.

3. Zhao Y, et al. (2023). “Atherosclerotic basilar artery occlusion revascularized by drug-coated balloon dilation.” International Journal of Neuroscience. Cited by: 8.

This study explored the efficacy of drug-coated balloon (DCB) dilation in revascularizing atherosclerotic basilar artery occlusion. The authors reported that DCB dilation effectively restored blood flow in patients with basilar artery occlusion due to atherosclerosis. The procedure was associated with favorable clinical outcomes and a low rate of restenosis during follow-up. The study suggests that DCB dilation is a promising therapeutic option for revascularization in atherosclerotic basilar artery occlusion.

4. Sun S, et al. (2020). “Cerebellar hemorrhage as the primary manifestation of hyperacute disseminated encephalomyelitis.” Acta Neurologica Belgica. Cited by: 12.

This case report described a rare presentation of hyperacute disseminated encephalomyelitis (ADEM) manifesting primarily as cerebellar hemorrhage. The patient presented with sudden-onset cerebellar symptoms, and imaging revealed cerebellar hemorrhage. Further investigations led to the diagnosis of ADEM. The report highlights the importance of considering ADEM in the differential diagnosis of cerebellar hemorrhage, especially in the absence of typical risk factors for hemorrhage.

5. Wu N, et al. (2023). “Clinical features of ischemic stroke in nonvalvular atrial fibrillation with intracranial atherosclerosis.” Brain and Behavior. Cited by: 7.

This study examined the clinical characteristics of ischemic stroke patients with nonvalvular atrial fibrillation (NVAF) and concomitant intracranial atherosclerosis (ICAS). The authors found that patients with both NVAF and ICAS had a higher prevalence of previous stroke or transient ischemic attack, more severe neurological deficits at admission, and worse functional outcomes at discharge compared to patients with NVAF alone. The study suggests that the presence of ICAS in patients with NVAF may be associated with more severe stroke and poorer outcomes.

Sources.

Conclusion

Dr. Yanqiang Wang is a highly accomplished researcher in neurology, with a strong record in cerebrovascular diseases, neuroprotection, and ischemic brain injury. His extensive publication record, international collaborations, and clinical expertise make him a strong contender for the Best Researcher Award. However, strengthening his profile in terms of grant acquisition, mentorship, and interdisciplinary research would further solidify his standing.

Galal Yahya | Molecular Biology | Best Researcher Award

Assoc. Prof. Dr. Galal Yahya | Molecular Biology | Best Researcher Award

Faculty of Pharmacy, at Zagazig University, Egypt.

Dr. Galal Yahya is an Egyptian microbiologist and immunologist specializing in infection biology and molecular microbiology. Currently an Associate Professor at Zagazig University, Egypt, he has also held prestigious research positions in Spain and Germany. With a Ph.D. in Biomedicine and Molecular Cell Biology from the University of Barcelona (IBMB-CSIC), his research focuses on antimicrobial resistance, infection biology, and immunology. Dr. Yahya has contributed significantly to understanding microbial pathogenesis and innovative treatment strategies. He has been awarded the Alexander von Humboldt Postdoctoral Fellowship and has worked extensively in molecular genetics and microbiology. Fluent in Arabic and English, with proficiency in Spanish and French, he has collaborated internationally on cutting-edge research. His publications in high-impact journals reflect his dedication to scientific excellence. Currently based in Barcelona, Spain, Dr. Yahya continues to advance microbiology and immunology through his research and academic contributions.

Professional Profile

Scopus

ORCID

Education 🎓

Dr. Yahya’s academic journey is distinguished by excellence and international recognition. He earned his B.Sc. in Pharmaceutical Science from Zagazig University, Egypt, in 2006, where he graduated with honors. In 2011, he obtained a Master’s degree (DEA) in Biochemistry and Molecular Biology from the University of Lleida, Spain, achieving the highest distinction (Excellent cum laude). His Ph.D. in Biomedicine and Molecular Cell Biology of Cancer was awarded in 2016 by the University of Barcelona (IBMB-CSIC), also with the highest honor. His doctoral research provided groundbreaking insights into microbial cell cycle regulation. His educational background laid a strong foundation for his specialization in infection biology, microbiology, and immunology. His academic achievements reflect his deep commitment to scientific inquiry and biomedical advancements, shaping his career as a leading researcher in microbiology.

Professional and Research Experience 🔬

Dr. Yahya’s professional career spans leading research institutions across Egypt, Spain, and Germany. He began as a Demonstrator (2007-2009) at the Department of Microbiology and Immunology, Zagazig University. His Ph.D. research took place in Marti Aldea Lab at the University of Lleida and IBMB-CSIC in Barcelona (2009-2016), where he explored microbial cell biology. In 2016, he became a Lecturer at Zagazig University and later secured the prestigious Alexander von Humboldt Postdoctoral Fellowship (2017-2021) at the Technical University of Kaiserslautern, Germany, focusing on molecular genetics. Since 2021, he has been an Associate Professor at Zagazig University, contributing to microbiology research and education. In 2023-2024, he served as a Senior Postdoctoral Investigator at IBMB-CSIC, Barcelona, furthering his expertise in infection biology and antibiotic resistance. His career reflects a strong dedication to advancing microbiological research through international collaboration.

Research Interests 🔍

Dr. Yahya’s research focuses on microbial infections, antimicrobial resistance, and immunology. His work explores innovative antifungal and antibacterial therapies, phage therapy, and biofilm inhibition strategies. He has a keen interest in host-pathogen interactions, molecular microbiology, and infection control mechanisms. His studies on phage-antibiotic synergy have paved the way for alternative treatments against multidrug-resistant bacteria. He is also involved in biotechnological applications, such as using microbes for self-healing concrete and sustainable environmental solutions. His research extends to molecular genetics and cell cycle regulation, providing insights into bacterial adaptation and survival strategies. Dr. Yahya’s interdisciplinary approach integrates microbiology, pharmacology, and biotechnology, addressing global health challenges. His expertise contributes to the development of novel therapeutic interventions to combat infectious diseases, making significant strides in microbiological research.

Awards and Recognitions 🏆

Dr. Yahya has received several prestigious awards recognizing his scientific contributions. Notably, he was awarded the Alexander von Humboldt Postdoctoral Fellowship (2017-2021) in Germany, a testament to his outstanding research in molecular microbiology. His Ph.D. dissertation earned Excellent cum laude distinction from the University of Barcelona, highlighting his academic excellence. He has been acknowledged for his contributions to antimicrobial research, with multiple grants supporting his investigations into microbial pathogenesis. Additionally, his research on phage therapy and antibiotic resistance has been recognized at international conferences. His work continues to shape the field of microbiology, earning him a place among leading researchers in infection biology. With numerous accolades, Dr. Yahya remains committed to advancing biomedical science and developing innovative solutions for infectious diseases.

Top Noted Publications 📚

Dr. Yahya has authored numerous research articles in high-impact journals, covering antimicrobial resistance, infection biology, and microbiological innovations. Some of his key publications include:

  • Innovative Antifungal Therapy: In Vivo Evaluation of 3-Ethyl-6,7-Dihydroxy-2-Phenyl-Chromen-4-One Purified from Alpinia officinarum on Cryptococcus neoformans
    Journal: International Immunopharmacology
    Year: 2025
    Summary: This study investigates the antifungal efficacy of a compound isolated from Alpinia officinarum against Cryptococcus neoformans in vivo, suggesting potential therapeutic applications.

  • Comprehensive Review for Aflatoxin Detoxification with Special Attention to Cold Plasma Treatment
    Journal: Mycotoxin Research
    Year: 2025
    Summary: This review discusses various aflatoxin detoxification methods, emphasizing the emerging role of cold plasma treatment as an effective strategy.

  • Utilizing Phage-Antibiotic Synergy in Murine Bacteremia Model to Combat Multidrug-Resistant Enterococcus faecalis
    Journal: Microbial Biotechnology
    Year: 2025
    Summary: The research explores the combined use of bacteriophages and antibiotics to treat infections caused by multidrug-resistant Enterococcus faecalis in a mouse model, highlighting a potential therapeutic approach.

  • Silk Fibroin/Gelatin Electrospun Nanofibrous Dressing Loaded with Roxadustat Accelerates Wound Healing in Diabetic Rats
    Journal: Journal of Drug Delivery Science and Technology
    Year: 2025
    Summary: This study evaluates a novel wound dressing composed of silk fibroin and gelatin nanofibers loaded with roxadustat, demonstrating enhanced wound healing in diabetic rat models.

  • Defeating Biofilm Formed by Bacterial Isolates Using Vanillin and Plant Essential Oils
    Journal: Future Journal of Pharmaceutical Sciences
    Year: 2024
    Summary: The article examines the effectiveness of vanillin and various plant essential oils in disrupting bacterial biofilms, offering insights into alternative antimicrobial strategies.

  • Carbapenem-Resistant Acinetobacter baumannii Lytic Phage Therapy in a Mouse Model
    Journal: Future Journal of Pharmaceutical Sciences
    Year: 2024
    Summary: This research assesses the therapeutic potential of lytic bacteriophages against carbapenem-resistant Acinetobacter baumannii infections in mice, indicating promising avenues for phage therapy.

  • Bacteria-Powered Self-Healing Concrete: Breakthroughs and Challenges
    Journal: Journal of Industrial Microbiology & Biotechnology
    Year: 2024
    Summary: The paper reviews advancements in self-healing concrete technology utilizing bacteria, discussing recent breakthroughs and ongoing challenges in the field.

  • Eco-Smart Biocontrol Strategies Utilizing Potent Microbes
    Journal: Biotechnology Reports
    Year: 2024
    Summary: This article explores environmentally friendly biocontrol methods employing effective microbial agents, highlighting sustainable approaches to pest and disease management.

  • Advances in Metal/Metal Oxide Nanoparticles for Antibiotic Resistance
    Journal: International Journal of Molecular Sciences
    Year: 2024
    Summary: The study delves into the development of metal and metal oxide nanoparticles as novel solutions to combat antibiotic-resistant bacteria, presenting recent progress and applications.

  • Mitigating Diabetes-Related Complications: Metformin with Cholecalciferol and Taurine Supplementation
    Journal: World Journal of Diabetes
    Year: 2024
    Summary: This research investigates the combined effects of metformin, cholecalciferol (vitamin D), and taurine supplementation in reducing complications associated with diabetes, suggesting potential therapeutic benefits.

Conclusion

Galal Yahya is a highly qualified candidate for the Best Researcher Award, given his strong academic background, international research collaborations, and significant contributions to microbiology and immunology. His publication record and research impact are impressive. Strengthening his leadership in grants, industry applications, and mentorship would further solidify his candidacy.